14 research outputs found

    Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins

    No full text
    During protein biosynthesis, nascent polypeptide chains that emerge from the ribosomal exit tunnel encounter ribosome-associated chaperones, which assist their folding to the native state(1,2). Here we present a 2.7 Angstrom crystal structure of Escherichia coli trigger factor, the best-characterized chaperone of this type, together with the structure of its ribosome-binding domain in complex with the Haloarcula marismortui large ribosomal subunit. Trigger factor adopts a unique conformation resembling a crouching dragon with separated domains forming the amino-terminal ribosome-binding `tail`, the peptidylprolyl isomerase `head`, the carboxy-terminal `arms` and connecting regions building up the `back`. From its attachment point on the ribosome, trigger factor projects the extended domains over the exit of the ribosomal tunnel, creating a protected folding space where nascent polypeptides may be shielded from proteases and aggregation. This study sheds new light on our understanding of co-translational protein folding, and suggests an unexpected mechanism of action for ribosome-associated chaperones

    Structure and control of the actin regulatory WAVE complex

    No full text
    Members of the Wiskott-Aldrich Syndrome Protein (WASP) family control cytoskeletal dynamics by promoting actin filament nucleation by the Arp2/3 complex. The WASP relative, WAVE, regulates lamellipodia formation within a 400 kDa, hetero-pentameric WAVE Regulatory Complex (WRC). The WRC is inactive toward the Arp2/3 complex, but can be stimulated by the Rac GTPase, kinases and phosphatidylinositols. We report the 2.3 Ã… crystal structure of the WRC and complementary mechanistic analyses. The structure shows that the activity-bearing VCA motif of WAVE is sequestered by a combination of intramolecular and intermolecular contacts within the WRC. Rac and kinases appear to destabilize a WRC element that is necessary for VCA sequestration, suggesting how these signals stimulate WRC activity toward the Arp2/3 complex. Spatial proximity of the Rac binding site and a large basic surface of the WRC suggests how the GTPase and phospholipids could cooperatively recruit the complex to membranes. Members of the Wiskott-Aldrich Syndrome Protein (WASP) family play central roles in the control of cellular actin dynamics1-3. These proteins receive information from multiple signaling pathways and respond by promoting the actin nucleating activity of the ubiquitou

    Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation

    No full text
    G-protein coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signaling effectors such as G proteins and β-arrestins. It is widely appreciated that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses (i.e., ‘efficacy’)1. Furthermore, mounting biophysical evidence, primarily using the β-adrenergic receptor (β2AR) as a model system, supports the existence of multiple active and inactive conformational states2–5. However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct β2AR conformations using single domain camelid antibodies (nanobodies): a previously described positive allosteric nanobody (Nb80) and a newly identified negative allosteric nanobody (Nb60)6,7. We show that Nb60 stabilizes a previously unappreciated low affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoproterenol has a 15,000-fold higher affinity for the β2AR in the presence of Nb80 compared to Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the β2AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R80). In contrast, for a number of partial agonists, both stabilization of R80 and destabilization of the inactive, Nb60-bound state (R60) contribute to their ability to modulate receptor activation. These data demonstrate that ligands can initiate a wide range of cellular responses by differentially stabilizing multiple receptor states
    corecore