1,454 research outputs found
Structure and peculiarities of the (8 x n)-type Si(001) surface prepared in a molecular-beam epitaxy chamber: a scanning tunneling microscopy study
A clean Si(001) surface thermally purified in an ultrahigh vacuum
molecular-beam epitaxy chamber has been investigated by means of scanning
tunneling microscopy. The morphological peculiarities of the Si(001) surface
have been explored in detail. The classification of the surface structure
elements has been carried out, the dimensions of the elements have been
measured, and the relative heights of the surface relief have been determined.
A reconstruction of the Si(001) surface prepared in the molecular-beam epitaxy
chamber has been found to be (8 x n). A model of the Si(001)-(8 x n) surface
structure is proposed.Comment: 4 pages, 8 figures. Complete versio
Coupled-barrier diffusion: the case of oxygen in silicon
Oxygen migration in silicon corresponds to an apparently simple jump between
neighboring bridge sites. Yet, extensive theoretical calculations have so far
produced conflicting results and have failed to provide a satisfactory account
of the observed eV activation energy. We report a comprehensive set of
first-principles calculations that demonstrate that the seemingly simple oxygen
jump is actually a complex process involving coupled barriers and can be
properly described quantitatively in terms of an energy hypersurface with a
``saddle ridge'' and an activation energy of eV. Earlier
calculations correspond to different points or lines on this hypersurface.Comment: 4 Figures available upon request. Accepted for publication in Phys.
Rev. Let
Defects in SiO2 as the possible origin of near interface traps in the SiC∕SiO2 system: A systematic theoretical study
A systematic study of the level positions of intrinsic and carbon defects in SiO2 is presented, based on density functional calculations with a hybrid functional in an alpha-quartz supercell. The results are analyzed from the point of view of the near interface traps (NIT), observed in both SiC/SiO2 and Si/SiO2 systems, and assumed to have their origins in the oxide. It is shown that the vacancies and the oxygen interstitial can be excluded as the origin of such NIT, while the silicon interstitial and carbon dimers give rise to gap levels in the energy range inferred from experiments. The properties of these defects are discussed in light of the knowledge about the SiC/SiO2 interface
Atomic-scale perspective on the origin of attractive step interactions on Si(113)
Recent experiments have shown that steps on Si(113) surfaces self-organize
into bunches due to a competition between long-range repulsive and short-range
attractive interactions. Using empirical and tight-binding interatomic
potentials, we investigate the physical origin of the short-range attraction,
and report the formation and interaction energies of steps. We find that the
short-range attraction between steps is due to the annihilation of force
monopoles at their edges as they combine to form bunches. Our results for the
strengths of the attractive interactions are consistent with the values
determined from experimental studies on kinetics of faceting.Comment: 4 pages, 3 figures, to appear in Phys. Rev B, Rapid Communication
Spatial structure of an individual Mn acceptor in GaAs
The wave function of a hole bound to an individual Mn acceptor in GaAs is
spatially mapped by scanning tunneling microscopy at room temperature and an
anisotropic, cross-like shape is observed. The spatial structure is compared
with that from an envelope-function, effective mass model, and from a
tight-binding model. This demonstrates that anisotropy arising from the cubic
symmetry of the GaAs crystal produces the cross-like shape for the hole
wave-function. Thus the coupling between Mn dopants in GaMnAs mediated by such
holes will be highly anisotropic.Comment: 3 figures, submitted to PR
Highly site-specific H2 adsorption on vicinal Si(001) surfaces
Experimental and theoretical results for the dissociative adsorption of H_2
on vicinal Si(001) surfaces are presented. Using optical second-harmonic
generation, sticking probabilities at the step sites are found to exceed those
on the terraces by up to six orders of magnitude. Density functional theory
calculations indicate the presence of direct adsorption pathways for
monohydride formation but with a dramatically lowered barrier for step
adsorption due to an efficient rehybridization of dangling orbitals.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Lett. (1998). Other
related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
STM and RHEED study of the Si(001)-c(8x8) surface
The Si(001) surface deoxidized by short annealing at T~925C in the ultrahigh
vacuum molecular beam epitaxy chamber has been in situ investigated by high
resolution scanning tunnelling microscopy (STM) and reflected high energy
electron diffraction (RHEED). RHEED patterns corresponding to (2x1) and (4x4)
structures were observed during sample treatment. The (4x4) reconstruction
arose at T<600C after annealing. The reconstruction was observed to be
reversible: the (4x4) structure turned into the (2x1) one at T>600C, the (4x4)
structure appeared again at recurring cooling. The c(8x8) reconstruction was
revealed by STM at room temperature on the same samples. A fraction of the
surface area covered by the c(8x8) structure decreased as the sample cooling
rate was reduced. The (2x1) structure was observed on the surface free of the
c(8x8) one. The c(8x8) structure has been evidenced to manifest itself as the
(4x4) one in the RHEED patterns. A model of the c(8x8) structure formation has
been built on the basis of the STM data. Origin of the high-order structure on
the Si(001) surface and its connection with the epinucleation phenomenon are
discussed.Comment: 26 pages, 12 figure
Electronic dielectric constants of insulators by the polarization method
We discuss a non-perturbative, technically straightforward, easy-to-use, and
computationally affordable method, based on polarization theory, for the
calculation of the electronic dielectric constant of insulating solids at the
first principles level. We apply the method to GaAs, AlAs, InN, SiC, ZnO, GaN,
AlN, BeO, LiF, PbTiO, and CaTiO. The predicted \einf's agree well
with those given by Density Functional Perturbation Theory (the reference
theoretical treatment), and they are generally within less than 10 % of
experiment.Comment: RevTeX 4 pages, 2 ps figure
Density-functional study of hydrogen chemisorption on vicinal Si(001) surfaces
Relaxed atomic geometries and chemisorption energies have been calculated for
the dissociative adsorption of molecular hydrogen on vicinal Si(001) surfaces.
We employ density-functional theory, together with a pseudopotential for Si,
and apply the generalized gradient approximation by Perdew and Wang to the
exchange-correlation functional. We find the double-atomic-height rebonded D_B
step, which is known to be stable on the clean surface, to remain stable on
partially hydrogen-covered surfaces. The H atoms preferentially bind to the Si
atoms at the rebonded step edge, with a chemisorption energy difference with
respect to the terrace sites of >sim 0.1 eV. A surface with rebonded single
atomic height S_A and S_B steps gives very similar results. The interaction
between H-Si-Si-H mono-hydride units is shown to be unimportant for the
calculation of the step-edge hydrogen-occupation. Our results confirm the
interpretation and results of the recent H_2 adsorption experiments on vicinal
Si surfaces by Raschke and Hoefer described in the preceding paper.Comment: 13 pages, 8 figures, submitted to Phys. Rev. B. Other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
- …