8 research outputs found

    Spectral width of F-region Syowa East SuperDARN echoes

    Get PDF
    第2回極域科学シンポジウム/第35回極域宙空圏シンポジウム 11月15日(火) 国立極地研究所 2階大会議

    Optical and SuperDARN radar observations of duskside shock aurora over Zhongshan Station

    Get PDF
    We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fast-scan mode covering the ZHS region. With the two independent data sets, we examine ionospheric plasma convection and aurora arising from a sudden impulse (SI) event associated with an interplanetary shock. During the transient shock compression, the aurora was quiescent without any optical emission at the preliminary impulse of the SI. About 7 min later, a new thin auroral arc with brighter emissions and a lifetime of ~14 min expanded westward from the region above ZHS during the main impulse of the SI. SuperDARN radar line-of-sight measurements showed periodical oscillation in the flow direction with ultra-low-frequency waves having a period of ~8 min during the shock compression. We suggest that downward field-aligned current during the preliminary impulse stage of the SI was the main driver of the first plasma flow reversal, and the subsequent new discrete auroral arc may be associated with field-aligned acceleration in the region of the main impulse related upward field-aligned currents. The ground magnetometer observations suggest that the oscillation of the ionospheric convection on the duskside was associated with field line resonance activity

    Editorial: Special issue: “SuperDARN / Studies of Geospace Dynamics - Today and Future”

    Get PDF
    This Polar Science special issue, “SuperDARN/Studies of Geospace Dynamics - Today and Future,” originated from an international SuperDARN (Super Dual Auroral Radar Network) annual workshop held in Japan in June 2019, and is focused on studies of geospace dynamics particularly related to SuperDARN. Its purpose is to overview recent wide and active research, new scientific results and future perspectives mainly through, but not limited to, the scientific papers presented at the workshop. This special issue is an opportunity to commemorate a quarter century since the establishment of SuperDARN in 1995 and to contribute to the further development of geospace sciences and relevant technology. Thirteen valuable papers have been published covering a wide variety of scientific and technical topics. © 202

    An integrated analysis platform merging SuperDARN data within the THEMIS tool developed by ERG-Science Center (ERG-SC)

    Get PDF
    The Energization and Radiation in Geospace (ERG) mission seeks to explore the dynamics of the radiation belts in the Earth’s inner magnetosphere with a space-borne probe (ERG satellite) in coordination with related ground observations and simulations/ modeling studies. For this mission, the Science Center of the ERG project (ERG-SC) will provide a useful data analysis platform based on the THEMIS Data Analysis software Suite (TDAS), which has been widely used by researchers in many conjunction studies of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and ground data. To import SuperDARN data to this highly useful platform, ERG-SC, in close collaboration with SuperDARN groups, developed the Common Data Format (CDF) design suitable for fitacf data and has prepared an open database of SuperDARN data archived in CDF. ERG-SC has also been developing programs written in Interactive Data Language (IDL) to load fitacf CDF files and to generate various kinds of plots−not only range-time-intensity-type plots but also two-dimensional map plots that can be superposed with other data, such as all-sky images of THEMIS-GBO and orbital footprints of various satellites. The CDF-TDAS scheme developed by ERG-SC will make it easier for researchers who are not familiar with SuperDARN data to access and analyze SuperDARN data and thereby facilitate collaborative studies with satellite data, such as the inner magnetosphere data provided by the ERG (Japan)−RBSP (USA)−THEMIS (USA) fleet

    Global Diagnostics of Ionospheric Absorption During X-Ray Solar Flares Based on 8- to 20-MHz Noise Measured by Over-the-Horizon Radars

    Get PDF
    An analysis of noise attenuation during 80 solar flares between 2013 and 2017 was carried out at frequencies 8–20 MHz using 34 Super Dual Auroral Radar Network radars and the EKB ISTP SB RAS radar. The attenuation was determined on the basis of noise measurements performed by the radars during the intervals between transmitting periods. The location of the primary contributing ground sources of noise was found by consideration of the propagation paths of radar backscatter from the ground. The elevation angle for the ground echoes was determined through a new empirical model. It was used to determine the paths of the noise and the location of its source. The method was particularly well suited for daytime situations, which had to be limited for the most part to only two crossings through the D region. Knowing the radio path was used to determine an equivalent vertical propagation attenuation factor. The change in the noise during solar flares was correlated with solar radiation lines measured by GOES/XRS, GOES/EUVS, SDO/AIA, SDO/EVE, SOHO/SEM, and PROBA2/LYRA instruments. Radiation in the 1 to 8 Å and near 100 Å are shown to be primarily responsible for the increase in the radionoise absorption, and by inference, for an increase in the D and E region density. The data are also shown to be consistent with a radar frequency dependence having a power law with an exponent of −1.6. This study shows that a new data set can be made available to study D and E regions

    Interhemispheric comparison of spectral width boundary as observed by the SuperDARN radars

    Get PDF
    Previous studies have shown that dayside equatorward edge of coherent HF radar backscatter having broad Doppler spectral width is coincident with the equatorward edge of the cusp particle precipitation. This enables the boundary between broad and narrow spectral width backscatters (spectral width boundary) in the dayside magnetic local time sector to be used as a proxy for the open/closed field line boundary. The present case study employs magnetically conjugate SuperDARN coherent HF radars to make an inter-hemispheric comparison of the location and variation of the spectral width boundaries. Agreement between the magnetic latitudes of the boundaries in both hemispheres is remarkable. Correlation coefficients between the latitudes of the boundaries are larger than 0.70. Temporal variation of the spectral width boundary follows the same equatorward trend in both hemispheres. This is consistent with the accumulation of open flux in the polar cap by dayside low-latitude magnetopause reconnection, expected when IMF B<sub>z</sub> is negative. Boundaries in both hemispheres also exhibit short-lived poleward motions superposed on the general equator-ward trend, which follows the onset of substorm expansion phase and a temporary northward excursion of IMF B<sub>z</sub> during substorm recovery phase. There is an interhemispheric difference in response time to the substorm occurrence between two hemispheres. The spectral width boundary in the Southern Hemisphere starts to move poleward 10 min earlier than that in the Northern Hemisphere. We discuss this difference in terms of interhemispheric asymmetry of the substorm breakup region in the longitudinal direction associated with the effect of IMF B<sub>y</sub>.<br><br><b>Key words. </b>Ionosphere (ionosphere-magnetosphere interactions; plasma convection) – Magnetospheric physics (magnetopause, cusp, boundary layers

    Simultaneous observations of Syowa East HF radar and Zhongshan Station optical aurora associated with the solar wind negative pressure impulse

    Get PDF
    The field of views of the Syowa East HF radar covers over Zhongshan Station (magnetic latitude ~ 74.5°S). We examined the relation between HF radar signatures and optical aurora by using the data obtained on 3 August 1997. A geomagnetic negative sudden impulse (SI(-)) occurred at ~ 1432 UT on 3 August 1997 associated with the sudden decrease of solar wind plasma density. From the behavior of the optical aurora observed by all-sky TV camera and scanning photometers at Zhongshan Station, a sudden enhancement of auroral emission intensity and poleward moving signature occurred associated with the negative Sl. It is interesting that the temporal and spatial variations of the HF radar backscatter power showed one to one correlations with optical aurora data. The details of this event are examined and compared with the data onboard WIND satellite and from ground based magnetometers
    corecore