33 research outputs found

    Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor

    Get PDF
    To establish effective therapeutic strategies for eosinophil-related disorders, it is critical to understand the developmental pathway of human eosinophils. In mouse hematopoiesis, eosinophils originate from the eosinophil lineage-committed progenitor (EoP) that has been purified downstream of the granulocyte/macrophage progenitor (GMP). We show that the EoP is also isolatable in human adult bone marrow. The previously defined human common myeloid progenitor (hCMP) population (Manz, M.G., T. Miyamoto, K. Akashi, and I.L. Weissman. 2002. Proc. Natl. Acad. Sci. USA. 99:11872–11877) was composed of the interleukin 5 receptor α chain+ (IL-5Rα+) and IL-5Rα− fractions, and the former was the hEoP. The IL-5Rα+CD34+CD38+IL-3Rα+CD45RA− hEoPs gave rise exclusively to pure eosinophil colonies but never differentiated into basophils or neutrophils. The IL-5Rα− hCMP generated the hEoP together with the hGMP or the human megakaryocyte/erythrocyte progenitor (hMEP), whereas hGMPs or hMEPs never differentiated into eosinophils. Importantly, the number of hEoPs increased up to 20% of the conventional hCMP population in the bone marrow of patients with eosinophilia, suggesting that the hEoP stage is involved in eosinophil differentiation and expansion in vivo. Accordingly, the phenotypic definition of hCMP should be revised to exclude the hEoP; an “IL-5Rα–negative” criterion should be added to define more homogenous hCMP. The newly identified hEoP is a powerful tool in studying pathogenesis of eosinophilia and could be a therapeutic target for a variety of eosinophil-related disorders

    Crystallization and preliminary X-ray analysis of AAMS amidohydrolase, the final enzyme in degradation pathway I of pyridoxine

    Get PDF
    Recombinant α-(N-acetylaminomethylene)succinic acid amidohydrolase from M. loti MAFF303099 was crystallized and diffraction data were collected at 2.7 Å resolution

    Crystallization and preliminary X-ray analysis of 4-­pyridoxolactonase from Mesorhizobium loti

    Get PDF
    Recombinant 4-pyridoxolactonase from M. loti MAFF303099 was crystallized in two forms and diffraction data were collected to 2.0 and 1.9 Å resolution, respectively

    Health Effects of Drinking Water Produced from Deep Sea Water: A Randomized Double-Blind Controlled Trial

    No full text
    Global trends focus on a balanced intake of foods and beverages to maintain health. Drinking water (MIU; hardness = 88) produced from deep sea water (DSW) collected offshore of Muroto, Japan, is considered healthy. We previously reported that the DSW-based drinking water (RDSW; hardness = 1000) improved human gut health. The aim of this randomized double-blind controlled trial was to assess the effects of MIU on human health. Volunteers were assigned to MIU (n = 41) or mineral water (control) groups (n = 41). Participants consumed 1 L of either water type daily for 12 weeks. A self-administered questionnaire was administered, and stool and urine samples were collected throughout the intervention. We measured the fecal biomarkers of nine short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA), as well as urinary isoflavones. In the MIU group, concentrations of three major SCFAs and sIgA increased postintervention. MIU intake significantly affected one SCFA (butyric acid). The metabolic efficiency of daidzein-to-equol conversion was significantly higher in the MIU group than in the control group throughout the intervention. MIU intake reflected the intestinal environment through increased production of three major SCFAs and sIgA, and accelerated daidzein-to-equol metabolic conversion, suggesting the beneficial health effects of MIU

    Molecular cloning, expression and characterization of pyridoxamine–pyruvate aminotransferase

    No full text
    Pyridoxamine–pyruvate aminotransferase is a PLP (pyridoxal 5′-phosphate) (a coenzyme form of vitamin B(6))-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine–pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the α family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys(197) was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429–432]. The K(d) value for pyridoxal determined by means of CD was 100-fold lower than the K(m) value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed
    corecore