38,491 research outputs found
Recommended from our members
Do arsenic levels in rice pose a health risk to the UK population?
Consumption of rice and rice products can be a significant exposure pathway to inorganic arsenic (iAs), which is a group 1 carcinogen to humans. The UK follows the current European Commission regulations so that iAs concentrations must be  0.1 mg kg-1 were selected for As speciation using HPLC-ICP-MS. Based on the average concentration of iAs of our samples, we calculated values for the Lifetime Cancer Risk (LCR), Target Hazard Quotient (THQ) and Margin of Exposure (MoE). We found a statistically significant difference between organically and non-organically grown rice. We also found that brown rice contained a significantly higher concentration of iAs compared to white or wild rice. Notably, 28 rice samples exceeded the iAs maximum limit stipulated by the EU (0.1 mg kg-1) with an average iAs concentration of 0.13 mg kg-1; therefore consumption of these rice types could be riskier for infants than adults. Based on the MoE, it was found that infants up to 1 year must be restricted to a maximum of 20 g per day for the 28 rice types to avoid carcinogenic risks. We believe that consumers could be better informed whether the marketed product is fit for infants and young children, via appropriate product labelling containing information about iAs concentration
Basins of attraction for cascading maps
We study a finite uni-directional array of "cascading" or "threshold coupled"
chaotic maps. Such systems have been proposed for use in nonlinear computing
and have been applied to classification problems in bioinformatics. We describe
some of the attractors for such systems and prove general results about their
basins of attraction. In particular, we show that the basins of attraction have
infinitely many path components. We show that these components always
accumulate at the corners of the domain of the system. For all threshold
parameters above a certain value, we show that they accumulate at a Cantor set
in the interior of the domain. For certain ranges of the threshold, we prove
that the system has many attractors.Comment: 15 pages, 9 figures. To appear in International Journal of
Bifurcations and Chao
Steering effects on growth instability during step-flow growth of Cu on Cu(1,1,17)
Kinetic Monte Carlo simulation in conjunction with molecular dynamics
simulation is utilized to study the effect of the steered deposition on the
growth of Cu on Cu(1,1,17). It is found that the deposition flux becomes
inhomogeneous in step train direction and the inhomogeneity depends on the
deposition angle, when the deposition is made along that direction. Steering
effect is found to always increase the growth instability, with respect to the
case of homogeneous deposition. Further, the growth instability depends on the
deposition angle and direction, showing minimum at a certain deposition angle
off-normal to (001) terrace, and shows a strong correlation with the
inhomogeneous deposition flux. The increase of the growth instability is
ascribed to the strengthened step Erlich Schwoebel barrier effects that is
caused by the enhanced deposition flux near descending step edge due to the
steering effect.Comment: 5 page
Synchronization of Chaotic Oscillators due to Common Delay Time Modulation
We have found a synchronization behavior between two identical chaotic
systems^M when their delay times are modulated by a common irregular signal. ^M
This phenomenon is demonstrated both in two identical chaotic maps whose
delay times are driven by a common^M chaotic or random signal and in two
identical chaotic oscillators whose delay times are driven by^M a signal of
another chaotic oscillator. We analyze the phenomenon by using^M the Lyapunov
exponents and discuss it in relation with generalized synchronization.^MComment: 5 pages, 4 figures (to be published in PRE
Convergence of invariant densities in the small-noise limit
This paper presents a systematic numerical study of the effects of noise on
the invariant probability densities of dynamical systems with varying degrees
of hyperbolicity. It is found that the rate of convergence of invariant
densities in the small-noise limit is frequently governed by power laws. In
addition, a simple heuristic is proposed and found to correctly predict the
power law exponent in exponentially mixing systems. In systems which are not
exponentially mixing, the heuristic provides only an upper bound on the power
law exponent. As this numerical study requires the computation of invariant
densities across more than 2 decades of noise amplitudes, it also provides an
opportunity to discuss and compare standard numerical methods for computing
invariant probability densities.Comment: 27 pages, 19 figures, revised with minor correction
Recommended from our members
Determination of the hydrodynamic performance of marine propellers using fibre Bragg gratings
Downloading of the abstract is permitted for personal use only. A critical aspect in the design of marine propellers is their hydrodynamic performance which, when evaluated experimentally, requires a number of parameters to be monitored at the same time, i.e.The thrust and torque a propeller generates as well as the propeller shaft and vessel speed. In this investigation, three of those parameters are measured using Fibre Bragg Grating-based sensors, thus allowing for computationally derived performance values to be verified. For that purpose, open water tests were carried out where an instrumented propeller shaft was installed into a research vessel and measurements taken, evaluated and the results compared favorably with advanced computer-based simulations
Incommensurate Charge and Spin Fluctuations in d-wave Superconductors
We show analytic results for the irreducible charge and spin
susceptibilities, , where is the momentum
transfer between the nodes in d-wave superconductors. Using the BCS theory and
a circular Fermi surface, we find that the singular behavior of the irreducible
charge susceptibility leads to the dynamic incommensurate charge collective
modes. The peaks in the charge structure factor occur at a set of wave vectors
which form an ellipse around and in
momentum space with momentum dependent spectral weight. It is also found that,
due to the non-singular irreducible spin susceptibility, an extremely strong
interaction via random phase approximation is required to support the magnetic
peaks near . Under certain conditions, the peaks in the magnetic
structure factor occur near and .Comment: 5 pages, 3 figure
- …