71 research outputs found

    Flavor physics in the multi-Higgs doublet models induced by the left-right symmetry

    Full text link
    In this paper, we discuss the multi-Higgs doublet models, that could be effectively induced by the extended Standard Model (SM). In particular, we focus on the phenomenology in the supersymmetric model with left-right (LR) symmetry, where the down-type and the up-type Yukawa couplings are unified and the Yukawa coupling matrices are expected to be hermitian. In this model, several Higgs doublets are introduced to realize the realistic fermion mass matrices, and the heavy Higgs doublets have flavor changing couplings with quarks and leptons. The LR symmetry is assumed to break down at high energy to realize the Type-I seesaw mechanism. The supersymmetry breaking scale is expected to be around 100 TeV to achieve the 125 GeV Higgs. In such a setup, the flavor-dependent interaction of the Higgs fields becomes sizable, so that we especially discuss the flavor physics induced by the heavy Higgs fields in our work. Our prediction depends on the structure of neutrinos, e.g., the neutrino mass ordering. We demonstrate how the flavor structure of the SM affects the flavor violating couplings. In our analysis, we mainly focus on the four-fermi interaction induced by the scalar exchanging, and we propose a simple parameterization for the coefficients. Then, we find the correlations among the flavor observables and, for instance, see that our prediction for the μ3e\mu \to 3 e process could be covered by the future experiment, in one case where the neutrino mass hierarchy is normal.Comment: 39 pages, 16 figures, published versio

    Proficiency ニ モトズイタ ゲンゴ キョウイク トワ

    Get PDF

    Extensive Reading : Inquiry into Effective Program Duration

    Get PDF

    Ring Gap Structure around Class I Protostar WL 17

    Full text link
    WL 17 is a Class I object and was considered to have a ring-hole structure. We analyzed the structure around WL 17 to investigate the detailed properties of WL 17. We used ALMA archival data, which have a higher angular resolution than previous observations. We investigated the WL 17 system with the 1.3 mm dust continuum and 12CO and C18O (J = 2-1) line emissions. The dust continuum emission showed a clear ring structure with inner and outer edges of ~11 and ~21 au, respectively. In addition, we detected an inner disk of < 5 au radius enclosing the central star within the ring, the first observation of this structure. Thus, WL 17 has a ring-gap structure, not a ring-hole structure. We did not detect any marked emission in either the gap or inner disk, indicating that there is no sign of a planet, circumplanetary disk, or binary companion. We identified the base of both blue-shifted and red-shifted outflows based on the 12CO emission, which is clearly associated with the disk around WL 17. The outflow mass ejection rate is ~3.6x10^-7 Msun yr-1 and the dynamical timescale is as short as ~ 10^4 yr. The C18O emission showed that an inhomogeneous infalling envelope, which can induce episodic mass accretion, is distributed in the region within ~1000 au from the central protostar. With these new findings, we can constrain the planet formation and dust growth scenarios in the accretion phase of star formation.Comment: 22 pages, 9 figures, Accepted for publication in the Astrophysical Journa

    Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli

    Get PDF
    Odorant identity is represented in the olfactory bulb (OB) by the glomerular activity pattern, which reflects a combination of activated odorant receptors (ORs) in the olfactory epithelium. To elucidate this neuronal circuit at the molecular level, we established a functional OR identification strategy based on glomerular activity by combining in vivo Ca^(2+) imaging, retrograde dye labeling, and single-cell RT-PCR. Spatial and functional mapping of OR-defined glomeruli revealed that the glomerular positional relationship varied considerably between individual animals, resulting in different OR maps in the OB. Notably, OR-defined glomeruli exhibited different ligand spectra and far higher sensitivity compared to the in vitro pharmacological properties of corresponding ORs. Moreover, we found that the olfactory mucus was an important factor in the regulation of in vivo odorant responsiveness. Our results provide a methodology to examine in vivo glomerular responses at the receptor level and further help address the long-standing issues of olfactory sensitivity and specificity under physiological conditions

    Development of bifacial inverted polymer solar cells using a conductivity-controlled transparent PEDOT: PSS and a striped Au electrode on the hole collection side

    Get PDF
    An inverted bifacial polymer solar cell was developed using a conductivity-controlled transparent poly(3,4-ethylenedioxylenethiophene):poly(4- styrene sulfonic acid) (PEDOT:PSS) as a hole collection layer and a striped Au electrode with a large open aperture ratio (Rap) as a hole collection electrode. We investigated the performance of the device by varying the interelectrode distance of the striped Au electrode and the sheet resistance of the PEDOT:PSS film. The device using untreated Clevios P (PEDOT:PSS) showed a maximum electric output (Pw) in the Rap range of 50 to 65%. When alcohol-treated Clevios P (Clevios P+) with a lower electrical resistance was used, the maximum Pw increased by 40% compared with that of the device using Clevios P. The maximum Pw was obtained in the R ap range of 84% as the hole collection efficiency of the striped Au electrode improved with the decreased sheet resistance of the PEDOT:PSS. © 2014 The Japan Society of Applied Physics
    corecore