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An inverted bifacial polymer solar cell was developed using a conductivity-controlled transparent 

PEDOT:PSS as a hole collection layer and a striped Au electrode with a large open aperture ratio 

(Rap) as a hole collection electrode. We investigated the performance of the device by varying the 

inter-electrode distance of the striped Au electrode and the sheet resistance of the PEDOT:PSS film. 

The device using Clevios P (PEDOT:PSS) showed a maximum electric output (Pw) in the Rap range 

of 50 to 65 %. When alcohol-treated Clevios P (Clevios P+) with a lower electrical resistance was 

used, the maximum Pw increased by 40 % compared with that of the device using Clevios P. The 

maximum Pw was obtained in the Rap range of 84 % as the hole collection efficiency of the striped 

Au electrode improved with the decreased sheet resistance of the PEDOT:PSS. 
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1. Introduction 

Polymer solar cells have attracted worldwide attention as they are low-cost, lightweight, 

flexible and environmentally friendly1-8). They are viable candidates as post-silicon solar cells that 

can be applied as power generation alternatives on windows9), plastic sheets10-12), fibers13,14) and the 

insides of rooms. Bifacial solar cells are specially structured solar cells that generate electricity from 

both sides of the solar cell. They are transparent, have a vertical installation and higher output power. 

Bifacial polymer solar cells have the potential to act as a power generation system in places that are 

usually difficult to install such systems. However, reports on bifacial cells have been few, though it is 

important to encourage their widespread use15-18).  

We have previously studied electron collection layers, such as titanium oxide (TiOx and 

TiO2)
19-21), zinc oxide (ZnO)22) and zinc sulfide23), for inverted polymer solar cells. We examined the 

performance of inverted cells using TiOx and ZnO prepared by novel chemical-bath-deposition and 

sol-gel methods, and have developed long-life devices19,21) as well as flexible devices11,24). We have 

further reported how UV light irradiation affects the photovoltaic characteristics22,25,26). Recently we 

reported that inverted polymer solar cells using ZnO showed a UV light dependence of the device 

performance that was related to the preparation temperature of the ZnO26). This dependence is 

responsible for forming charge-trapping sites at the ZnO/active layer interface that act as 

recombination centers for photo-produced charges in the active layer. We also found that for the cell 

with ZnO prepared by heating at 250 °C, a high power conversion efficiency (PCE) was maintained 

even under continuous irradiation with simulated sunlight without UV. To develop bifacial inverted 

polymer solar cells, it is necessary to design the back Au electrode for light irradiation while also 

allowing for the device function under illumination with light in the non-UV region. UV light is 

completely absorbed by the active layer under irradiation from the Au side and consequently does 

not reach the electron collection layer. It is likely that our previous work is only part of the 

development of these bifacial devices. This current work was done to develop an efficient bifacial 
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inverted polymer solar cell using a conductivity-controlled transparent PEDOT:PSS as a hole 

collection layer and a striped Au electrode with a large open aperture ratio as a hole collection 

electrode. Fig. 1a and b show the schematic device structures of the monofacial and bifacial inverted 

polymer solar cells. We discuss how the inter-electrode distance of the striped Au electrode and the 

sheet resistance of the PEDOT:PSS are reflected in the characteristics of the bifacial devices. 
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2. Experimental Section 

Zinc acetylacetonate, acetylacetone, 2-methoxyethanol, regioregular P3HT (average Mn 

54,000–75,000), Triton-X 100 and o-dichlorobenzene (o-DCB) were purchased from Sigma-Aldrich 

Chemical Co., Inc. PCBM was purchased from Frontier Carbon Corporation. Four kinds of 

PEDOT:PSS dispersions in water (Clevios P, PVPAI4083, PH510, and PHCV4) were purchased 

from H. C. Starck GmbH, and their PEDOT:PSS ratios were 1:2.5, 1:6, 1:2.5, and 1:2.5 (by weight), 

respectively. All chemicals were used as received. Glass-ITO substrates (sheet resistance = 10 Ω/sq) 

and an Au wire were purchased from the Furuuchi Chemical Corporation. The glass-ITO electrodes 

were cleaned by sonication in 2-propanol, washed in boiling 2-propanol and then dried in air. The 

fabrication was carried out in air, controlling the relative humidity to less than 35 %. The ZnO film 

of about 60 nm thickness was deposited on the glass-ITO by the method described in our previous 

paper11) and annealed at 250 C for 1 h on a hot plate. A mixed o-DCB solution of P3HT and PCBM 

(weight ratio = 5:4) was spin-coated onto the ITO/ZnO, and then the P3HT:PCBM film was 

solvent-annealed for 40 min in an airtight container. A PEDOT:PSS dispersion in water containing 

0.5 wt.% Triton-X 100 was spin-coated onto the PCBM:P3HT layer. The thicknesses of the 

P3HT:PCBM and PEDOT:PSS films were 200 nm and 190 nm, respectively. To make a typical 

monofacial device, as illustrated in Fig. 1a, an Au back electrode was vacuum deposited at 2 × 10-5 

torr onto the PEDOT:PSS layer with a shadow mask. However, to make a bifacial device, as 

illustrated in Fig. 1b, an Au back electrode with an inter-electrode distance of 0.19 to 2.88 mm 

composed of long Au electrodes of about 0.22 mm width was deposited onto the PEDOT:PSS layer 

using six kinds of slit-like shadow masks. The distance between the Au electrode strips was denoted 

as Wint. Finally, the monofacial and bifacial devices were mechanically protected by laminating with 

a film (moisture-proof sheet “CELLEL F1550H”, Kureha Extech Co., Ltd.) at 150 C for 5 min 

under a reduced atmosphere. The photo-irradiation area was limited to 1 cm2 by making the ITO 

electrode of 1 cm width and the Au electrode of 1 cm width cross. This limited area was restricted to 
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about 1 cm2 by covering both sides of the front ITO and the back Au with black tape. A photograph 

of the bifacial devices taken from the Au side is shown in Fig. 2. The photo-irradiation area 

surrounding the black tape and the slit interval of the Au electrode strips were measured with a 

microscope (USB Microscope M3, Scalar Corp.). The open aperture ratio of the striped Au electrode, 

Rap, was obtained by estimating these areas. The I-V curves of the solar cells were measured by 

linear sweep voltammetry at a scan rate of 5 V min-1, under AM 1.5G simulated sunlight irradiation 

at an intensity of 100 mW/cm2 (1 sun). The light source was a solar simulator (XES-502S, SAN-EI 

Electric Co., Ltd.) calibrated with a standard silicon photovoltaic detector. All electric measurements 

were performed using an electrochemical analyzer (HZ-5000, Hokuto Denko Corp.). All 

measurements were carried out under an ambient atmosphere (ca. 25 °C/40–60 %RH). The thickness 

of the P3HT:PCBM and PEDOT:PSS films were measured by a microfigure measuring instrument 

(Surfcorder ET200, Kosaka Laboratory Ltd.). Electrical resistance was measured by the one terminal 

pair network method or the four-poles method, using a precision LCR meter (4284A, 

Hewlett-Packard Com.) or Ohm tester (3565, Tsuruga Electric Corp.).  

 

3. Results and Discussion 

To develop an efficient bifacial solar cell, we need to identify a transparent PEDOT:PSS film 

that can efficiently collect photo-produced holes on the Au electrode. We first evaluated the 

performance of monofacial inverted polymer solar cells using five kinds of PEDOT:PSS films with 

various sheet resistance. The results are summarized in Table I. When the PEDOT:PSS with a sheet 

resistance of 5 × 104 to 1 × 108 /sq was used as the hole collection layer, there were no great 

differences in the electric output (Pw). These PEDOT:PSS films included Clevios PVPAI4083, P, P+ 

and PH510. Clevios P+ represents the Clevios P film after being processed with 2-propanol27). It is 

known that conductivity of PEDOT:PSS enhances by treatment with sugar alcohol28,29), organic 

solvent30-32) and surfactant. However, when Clevios PHCV4 with the lowest sheet resistance was 
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used as the hole collection layer, the short circuit photocurrent (Jsc), the open light voltage (Voc) and 

fill factor (FF) were lower than those of the other devices, and resulted in the Pw being quite low. 

This is perhaps because the electron-blocking ability of PEDOT:PSS is low when the electrical 

resistance is low, and charge recombination may take place easily at the P3HT:PCBM/PEDOT:PSS 

interface using the PEDOT:PSS with low electrical resistance. 

Next, the bifacial devices with the striped Au electrodes at 0.19 mm intervals (Device 1) were 

fabricated using Clevios PVPAI4083, P, and P+. The Pw was evaluated by irradiating light from both 

sides of the front ITO and the back Au. We checked that the devices showed photovoltaic properties 

even when illuminated from the striped back Au electrode. The performance of the bifacial devices is 

summarized in Table II. The Pw was quite low by the back Au side irradiation compared with the 

front ITO side irradiation. This is because the Au electrode interrupts the incidence of light and 

decreases the amount of incident light entering the photoactive layer. When irradiating from the front 

ITO, the bifacial cells using Clevios P and P+ with lower sheet resistance showed a slightly lower Pw 

compared with the monofacial cells. However, the Pw of the bifacial cell using Clevios PVPAI4083 

with high sheet resistance greatly decreased compared with that of the monofacial cell. This is 

because the strong electrical resistance in the Clevios PVPAI4083 film prevents lateral motion of the 

holes. As a result, only the holes near the Au electrode can be collected. 

The performance of bifacial inverted polymer cells with various striped Au electrodes using 

Clevios P and P+ was evaluated to investigate the relation of Rap and Pw. Fig. 3 shows the I-V curves 

obtained by irradiating the front ITO side of five kinds of devices using Clevios P. The bifacial 

devices with comparatively narrow slit width (Devices 1 and 2) showed slightly inferior performance 

compared with the monofacial device, but a significant performance decrement was observed for the 

bifacial devices with wider slits (Devices 4 and 6). The relations of Rap and Pw for all of the bifacial 

devices fabricated in this work are shown in Fig. 4. The scale of the Wint is attached to the upper 

horizontal axis to identify the relation between Wint and Rap. It was found from the plots ● and ● in 
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Fig. 4 obtained by irradiating the front ITO side that the Pw of the bifacial devices was lower than 

that of the monofacial device (gray broken straight line). The Pw of the bifacial devices using Clevios 

P+ was also higher than that of the bifacial devices using Clevios P although both devices noted that 

the Pw decreased with the increase in Rap. These results clearly show that the lateral motion of the 

holes was restricted by the strong electrical resistance of the PEDOT:PSS film. The photo-produced 

holes cannot be efficiently collected by the striped Au electrodes when PEDOT:PSS with a high 

electrical resistance is used as the hole collection layer. The plots ○ and ○ in Fig. 4 were obtained by 

irradiating the striped back Au electrode side. The gray solid straight line corresponds to an ideal Pw 

that assumes all of the photo-produced holes arriving at the PEDOT:PSS layer are collected by the 

striped Au electrode. The experimental data plots exist below the line. The Rap of the striped Au 

electrode showing the maximum Pw was in the range of 55 to 65 % for the bifacial cells using 

Clevios P with higher electrical resistance, and was in the range of 75 to 85 % for the bifacial cells 

using Clevios P+ with lower electrical resistance. The maximum Pw (1.61 mW) using Clevios P+ 

increased by 40 % compared with the maximum achieved (1.13 mW) using Clevios P. It is worth 

noting that the Rap can be enlarged to about 85 % when the PEDOT:PSS had moderate electrical 

resistance. 

 

4. Conclusions 

A novel method for producing bifacial inverted polymer solar cells was reported using a 

combination of a striped Au electrode and a resistance-controlled PEDOT:PSS hole collection layer. 

The photovoltaic characteristics of this device was determined. For the PEDOT:PSS hole collection 

layer in the bifacial cell, when the PEDOT:PSS with the lowest sheet resistance was used, the device 

performance was less than that of other devices because of its lower electron-blocking ability. This 

allowed charge recombination to take place easily at the P3HT:PCBM/PEDOT:PSS interface. 

However, the Pw of the bifacial cell using PEDOT:PSS with a high sheet resistance decreased 
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significantly compared with that of the monofacial cell. This is because the strong electrical 

resistance prevents lateral motion of the holes in the PEDOT:PSS film, showing that only the holes 

near the Au electrode can be collected. We evaluated the device performance of bifacial inverted 

polymer cells with various striped Au electrodes using Clevios P and P+. The maximum Pw was seen 

when the Rap of the striped Au electrode was between 75 to 85 %, which occurred when Clevios P+ 

was used. We believe that these results regarding bifacial inverted polymer solar cells are valuable, 

although we do not completely understand the difference in the photovoltaic characteristics by 

irradiation from both the ITO and Au sides. Detailed investigations on this performance using other 

evaluation methods are currently in progress. 
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Table I Performance of monofacial inverted polymer solar cells. 

PEDOT:PSS 
Sheet 

resistance / 
104  sq-1 

Jsc / mA Voc / V FF Pw a) / mW 

PVPAI4083 14700 7.62 0.59 0.60 2.69 
Clevios P 15 ± 5 7.67 0.57 0.61 2.67 

Clevios P+ b) 4.5 ± 0.3 7.97 0.59 0.57 2.68 
PH510 12 ± 1 7.72 0.56 0.57 2.43 
PHCV4 1.6 ± 0.2 7.57 0.51 0.45 1.73 

a) Electric output. Because the simulated solar light with the intensity of 100 mW/cm2 enters into 

a 1 cm2
 photoactive layer, the Pw is equal to the power conversion efficiency (PCE). 

b) Clevios P+ represents the Clevios P film after the addition processing of 2-propanol dropping. 
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Table II Performance of bifacial inverted polymer solar cells 

with a striped Au electrode of 0.19 mm interval (Device 1). 

Irradiation 
side 

PEDOT:PSS
Effective Area a) 

/ cm2 
Jsc / mA Voc / V FF Pw

 b)/ mW PCE c)/ % 

ITO PVPAI4083 1.0 5.29 0.56 0.52 1.54 1.54 
ITO Clevios P 1.0 7.75 0.55 0.54 2.29 2.29 
ITO Clevios P+ 1.0 8.09 0.55 0.58 2.59 2.59 
Au PVPAI4083 0.43 1.38 0.50 0.42 0.29 0.68 
Au Clevios P 0.44 3.24 0.53 0.57 0.98 2.23 
Au Clevios P+ 0.43 3.63 0.53 0.59 1.15 2.64 

a) The area in which the simulated solar light with an intensity of 100 mW/cm2 enters into the 

photoactive layer. This value is equal to the open aperture ratio, Rap. 

b) Electric output. 

c) The PCE is obtained by dividing the Pw by the effective area. 
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Figure caption 

 
Fig. 1 Schematic device structures of (a) monofacial and (b) bifacial inverted polymer solar cells. 
 

Fig. 2 Photographs of the bifacial inverted polymer solar cells with different inter-electrode distance 

(Wint) taken from the Au electrode side. The illumination area was restricted to 1 cm2 by covering 

with black tape. Rap represents the open aperture ratio. 

 

Fig. 3 Photo I-V curves of monofacial and bifacial inverted polymer solar cells using Clevios P. The 

photo irradiation was carried out from the ITO side. Refer to Fig. 2 for Devices 1–6. 

    

Fig. 4 Plots of the electric output (Pw) against the open aperture ratio (Rap) of the Au electrode side. 

●: When irradiating the devices using Clevios P+ from the ITO side, ●: When irradiating the devices 

using Clevios P from the ITO side, ○: When irradiating the devices using Clevios P+ from the Au 

side, ○: When irradiating the devices using Clevios P from the Au side, Gray broken straight line: Pw 

of the monofacial device when irradiated from the ITO side, Gray solid straight line: ideal Pw 

assuming all photo-produced holes arriving at the PEDOT:PSS layer are collected by the striped Au 

electrodes. 
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Fig. 1 Kuwabara et al. 
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Fig. 2 Kuwabara et al. 

 

 

  

(a) Device 1 
Wint = 0.19 mm 

(Rap = 43 %) 

(b) Device 2 
Wint = 0.27 mm 

(Rap = 50 %) 

(c) Device 3 
Wint = 0.49 mm 

(Rap = 65 %) 

(f) Device 6 
Wint = 2.82 mm 

(Rap = 93 %) 

(e) Device 5 
Wint = 1.42 mm 

(Rap = 84 %) 

(d) Device 4 
Wint = 0.87 mm 

(Rap = 75 %) 
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Fig. 3 Kuwabara et al. 
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Fig. 4 Kuwabara et al. 
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