538 research outputs found

    Enhancing entanglement detection of quantum optical frequency combs via stimulated emission

    Get PDF
    We investigate the performance of a certain nonclassicality identifier, expressed via integrated second-order intensity moments of optical fields, in revealing bipartite entanglement of quantum-optical frequency combs (QOFCs), which are generated in both spontaneous and stimulated parametric down-conversion processes. We show that, by utilizing that nonclassicality identifier, one can well identify the entanglement of the QOFC directly from the experimentally measured intensity moments without invoking any state reconstruction techniques or homodyne detection. Moreover, we demonstrate that the stimulated generation of the QOFC improves the entanglement detection of these fields with the nonclassicality identifier. Additionally, we show that the nonclassicality identifier can be expressed in a factorized form of detectors quantum efficiencies and the number of modes, if the QOFC consists of many copies of the same two-mode twin beam. As an example, we apply the nonclassicality identifier to two specific types of QOFC, where: (i) the QOFC consists of many independent two-mode twin beams with non-overlapped spatial frequency modes, and (ii) the QOFC contains entangled spatial frequency modes which are completely overlapped, i.e., each mode is entangled with all the remaining modes in the system. We show that, in both cases, the nonclassicality identifier can reveal bipartite entanglement of the QOFC including noise, and that it becomes even more sensitive for the stimulated processes.Comment: 11 p., 8 fig

    Theory of three-pulse photon echo spectroscopy with dual frequency combs

    Get PDF
    A theoretical analysis is carried out for the recently developed three-pulse photon echo spectroscopy employing dual frequency combs (DFC) as the light sources. In this method, the molecular sample interacts with three pulse trains derived from the DFC and the generated third-order signal is displayed as a two-dimensional (2D) spectrum that depends on the waiting time introduced by employing asynchronous optical sampling method. Through the analysis of the heterodyne-detected signal interferogram using a local oscillator derived from one of the optical frequency combs, we show that the 2D spectrum closely matches the spectrum expected from a conventional approach with four pulses derived from a single femtosecond laser pulse and the waiting time between the second and third field-matter interactions is given by the down-converted detection time of the interferogram. The theoretical result is applied to a two-level model system with solvation effect described by solvatochromic spectral density. The model 2D spectrum reproduces spectral features such as the loss of frequency correlation, dephasing, and spectral shift as a function of the population time. We anticipate that the present theory will be the general framework for quantitative descriptions of DFC-based nonlinear optical spectroscopy.Comment: 20 pages, 2 figures are included in the PDF fil

    Quantitative Complementarity of Wave-Particle Duality

    Full text link
    To test the principle of complementarity and wave-particle duality quantitatively, we need a quantum composite system that can be controlled by experimental parameters. Here, we demonstrate that a double-path interferometer consisting of two parametric downconversion crystals seeded by coherent idler fields, where the generated coherent signal photons are used for quantum interference and the conjugate idler fields are used for which-path detectors with controllable fidelity, is useful for elucidating the quantitative complementarity. We show that the source purity ΞΌs\mu_s is tightly bounded by the entanglement measure EE by the relation ΞΌs=1βˆ’E2\mu_s=\sqrt{1-E^2 } and the visibility VV and detector fidelity FF determine the coherence of the quantons, i.e., C=V∣F∣C = V|F|. The quantitative complementarity of the double-path interferometer we developed recently is explained in terms of the quanton-detector entanglement or quanton source purity that are expressed as functions of injected seed photon numbers. We further suggest that the experimental scheme utilizing two stimulated parametric downconversion processes is an ideal tool for investigating and understanding wave-particle duality and complementarity quantitatively.Comment: 14 pages, 5 figure

    Selective uptake of epidermal growth factor-conjugated gold nanoparticle (EGF-GNP) facilitates non-thermal plasma (NTP)-mediated cell death

    Get PDF
    Non-thermal atmospheric pressure plasma (NTP) has been shown to induce cell death in various mammalian cancer cells. Accumulated evidence also shows that NTP could be clinically used in cancer therapy. However, the current NTP-based applications lack target specificity. Here, a novel method in NTP-mediated cancer therapeutics was described with enhanced target specificity by treating EGF (epidermal growth factor)-conjugated GNP (gold nanoparticle). The treatment with EGF-conjugated GNP complex, followed by NTP irradiation showed selective apoptosis of cells having receptor-mediated endocytosis. NTP triggered gamma-H2AX elevation which is a typical response elicited by DNA damage. These results suggest that EGF-conjugated GNP functions as an important adjuvant which gives target specificity in applications of conventional plasma therapy.111Ysciescopu

    Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors

    Get PDF
    The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10β€…pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1β€…s) and showed excellent selectivity in human serum

    Multi-ensemble metrology by programming local rotations with atom movements

    Full text link
    Current optical atomic clocks do not utilize their resources optimally. In particular, an exponential gain could be achieved if multiple atomic ensembles were to be controlled or read-out individually, even without entanglement. However, controlling optical transitions locally remains an outstanding challenge for neutral atom based clocks and quantum computing platforms. Here we show arbitrary, single-site addressing for an optical transition via sub-wavelength controlled moves of tweezer-trapped atoms, which we perform with 99.84(5)%99.84(5)\% fidelity and with 0.1(2)%0.1(2)\% crosstalk to non-addressed atoms. The scheme is highly robust as it relies only on relative position changes of tweezers and requires no additional addressing beams. Using this technique, we implement single-shot, dual-quadrature readout of Ramsey interferometry using two atomic ensembles simultaneously, and show an enhancement of the usable interrogation time at a given phase-slip error probability, yielding a 2.55(9) dB gain over standard, single-ensemble methods. Finally, we program a sequence which performs local dynamical decoupling during Ramsey evolution to evolve three ensembles with variable phase sensitivities, a key ingredient of optimal clock interrogation. Our results demonstrate the potential of fully programmable quantum optical clocks even without entanglement and could be combined with metrologically useful entangled states in the future

    Changes of empathy in medical college and medical school students: 1-year follow up study

    Get PDF
    BACKGROUND: This study aims to determine the correlation between medical education systems, medical college (MC) and medical school (MS), and empathy by investigating the changes in empathy among students with each additional year of medical education. METHODS: The subjects were MC and MS students who had participated in the same study the previous year. All participants completed the same self-report instruments: a questionnaire on sociodemographic characteristics, and the Korean edition of the Student Version of the Jefferson Scale of Empathy (JSE-S-K), Among 334 students, the final analysis was conducted on the data provided by 113 MC and 120 MS students, excluding 101 with incomplete data. RESULTS: The age and sex did not affect the changes in empathy. Though the JSE-S-K score of MS was significantly higher than that of MC in initial investigation, this study found no difference of empathy between MC and MS. CONCLUSION: Empathy increased significantly after one year of medical education. The difference between two education systems, MC and MS, did not affect the changes in empathy

    Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B cell development

    Get PDF
    Notch signaling regulates lineage decisions at multiple stages of lymphocyte development, and Notch activation requires the endocytosis of Notch ligands in the signal-sending cells. Four E3 ubiquitin ligases, Mind bomb (Mib) 1, Mib2, Neuralized (Neur) 1, and Neur2, regulate the Notch ligands to activate Notch signaling, but their roles in lymphocyte development have not been defined. We show that Mib1 regulates T and marginal zone B (MZB) cell development in the lymphopoietic niches. Inactivation of the Mib1 gene, but not the other E3 ligases, Mib2, Neur1, and Neur2, abrogated T and MZB cell development. Reciprocal bone marrow (BM) transplantation experiments revealed that Mib1 in the thymic and splenic niches is essential for T and MZB cell development. Interestingly, when BM cells from transgenic Notch reporter mice were transplanted into Mib1-null mice, the Notch signaling was abolished in the double-negative thymocytes. In addition, the endocytosis of Dll1 was impaired in the Mib1-null microenvironment. Moreover, the block in T cell development and the failure of Dll1 endocytosis were also observed in coculture system by Mib1 knockdown. Our study reveals that Mib1 is the essential E3 ligase in T and MZB cell development, through the regulation of Notch ligands in the thymic and splenic microenvironments
    • …
    corecore