
3196 Vol. 36, No. 11 / November 2019 / Journal of the Optical Society of America B Research Article

Theory of three-pulse photon echo spectroscopy
with dual frequency combs
Jonggu Jeon,1 JunWoo Kim,1 Tai Hyun Yoon,1,2 AND Minhaeng Cho1,3,*
1Center forMolecular Spectroscopy andDynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
2Department of Physics, Korea University, Seoul 02841, South Korea
3Department of Chemistry, Korea University, Seoul 02841, South Korea
*Corresponding author: mcho@korea.ac.kr

Received 31 May 2019; revised 1 September 2019; accepted 30 September 2019; posted 2 October 2019 (Doc. ID 368715);
published 29 October 2019

A theoretical analysis is carried out for the recently developed three-pulse photon echo spectroscopy employing
dual frequency combs (DFC) as the light sources. In this method, the molecular sample interacts with three pulse
trains derived from the DFC, and the generated third-order signal is displayed as a two-dimensional (2D) spec-
trum that depends on the waiting time introduced by employing the asynchronous optical sampling method.
Through the analysis of the heterodyne-detected signal interferogram using a local oscillator derived from one of
the optical frequency combs, we show that the 2D spectrum closely matches the spectrum expected from a conven-
tional approach with four pulses derived from a single femtosecond laser pulse, and the waiting time between the
second and third field-matter interactions is given by the down-converted detection time of the interferogram. The
theoretical result is applied to a two-level model system with solvation effect described by solvatochromic spectral
density. The model 2D spectrum reproduces spectral features such as the loss of frequency correlation, dephasing,
and spectral shift as a function of the population time. We anticipate that the present theory will be the general
framework for quantitative descriptions of DFC-based nonlinear optical spectroscopy. © 2019 Optical Society of

America

https://doi.org/10.1364/JOSAB.36.003196

1. INTRODUCTION

Three-pulse photon echo (3PPE) spectroscopy [1–4] is one
of the most widely used two-dimensional (2D) spectroscopy
techniques, and it can overcome many limitations of linear and
time-resolved one-dimensional spectroscopy [5–8]. For exam-
ple, 2D spectroscopy can resolve congested spectral features in
2D frequency space, distinguish homogeneous and inhomo-
geneous line-broadening mechanisms, and detect couplings
between different optical transitions. In 3PPE spectroscopy, the
molecular system interacts with three coherent laser pulses in
a non-collinear four-wave-mixing scheme, and the signal in a
specific phase-matching direction is heterodyne detected with
a local oscillator field. The signal interferogram obtained from
this measurement is then Fourier transformed over two time
variables τ and t , representing the delays between pulses 1 and
2 and between pulse 3 and the detection time, respectively, to
obtain the 2D spectrum in the conjugate frequency variables
ωτ and ωt . The spectrum parametrically depends on the wait-
ing or population time T between pulses 2 and 3 and thereby
conveys information on molecular dynamics and chemical and
biological processes occurring over T.

Currently, the experimental feasibility of 3PPE spectroscopy
by using dual frequency combs (DFC) as the light sources is
under investigation [9]. A frequency comb consists of a peri-
odic and coherent pulse train with a specific phase between
the optical carrier wave and the peak of the pulse envelope
[10,11]. By controlling the shift in this phase between successive
pulses separated by 1T = 2π/ωr , which is called the carrier-
envelope offset (CEO) phase 1φceo, it becomes possible to
obtain equally spaced spectral peaks or combs with frequencies
of (1φceo/2π + n)ωr , i.e., integer multiples of the repetition
frequency ωr plus an offset determined by the CEO phase.
DFC spectroscopy [12–17] employs two frequency combs
with a slight mismatch δωr =ωr 1 −ωr 2 in their repetition
frequencies, and this enables asynchronous optical sampling
(ASOPS) [14,18], that is, an automatic scanning of the delay
times between two pulses arriving at the sample. A precise and
ultrafast interferometric scan is possible with ASOPS only when
the carrier-envelope phases of the two laser oscillators as well
as their repetition rates are precisely stabilized. This approach
also enables the detection of optical resonances using radio
frequency (RF) electronics through the down-conversion of
the signal frequency from the optical to the RF range. DFC
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has also been applied to various nonlinear spectroscopy studies
[16,17,19–24]. Compared to typical nonlinear spectroscopy,
DFC nonlinear spectroscopy provides fast data acquisition, high
frequency resolution, and relatively simple instrumentation
based on the unique properties of DFC.

In our DFC 3PPE spectroscopy [9], four pulse trains derived
from two frequency combs (combs 1 and 2) with slightly differ-
ent repetition frequencies are used as shown in Fig. 1. Comb 1
is split into two, and these two pulse trains arrive at the sample
with a time delay τ1 and different propagation directions k1 and
k2. The pulse train of comb 2 then arrives at the sample in yet
another direction k3. Since the first two pulse trains are derived
from comb 1, they have a fixed time gap τ1, which is chosen to
be much smaller than the repetition period 1T1 = 2π/ωr 1 of
comb 1. In contrast, the third pulse train comes from comb 2
and is therefore delayed by 1T2 −1T1 = 2πδωr /(ωr 1ωr 2)

from the first two pulses after each repetition. Since the time
between the second and third pulses is the population time,
ASOPS is realized for the population time in this method [24].
This ensures uniform data quality over a long population time
up to the nanosecond (ns) range without the problem of wave
front variation that could arise when using optical delay lines.
The signal generated from the three field-matter interactions
is heterodyne detected with a local oscillator, which is comb
2 delayed by τ2 and redirected in the ks =−k1 + k2 + k3

direction. To obtain the 2D spectrum, the measurement is
repeated with varying τ1 and τ2 up to the coherence decay
time (∼100 fs), and the signal interferogram is 2D Fourier
transformed over τ1 and τ2. A typical frequency comb has the
following parameters: the carrier frequencies ωc j ∼ 1 PHz,
ωr j ∼ 1 GHz, and δωr ∼ 1 kHz. [Throughout this paper,
we express the numerical value of an angular frequency ω in
either hertz (Hz) or centimeter (cm−1) units that correspond
to ν =ω/(2π) and ν̄ =ω/(2πc ), respectively, where c is the
speed of light.] Therefore, the effective interval of the waiting
time measurement is 2πδωr /(ωr 1ωr 2)∼ 1 fs, while the labo-
ratory time of the measurement interval is1T1 ∼1T2 ∼ 1 ns.
The ratio of these two quantities, δωr /ωr j ∼ 10−6, is called
the frequency down-conversion factor of DFC spectroscopy.
This also alludes to the similar down-conversion relation
Tw ∼ (δωr /ωr j )t ∼ 10−6t between the measurement time t
of the signal interferogram and the waiting time Tw. Lomsadze
and Cundiff have, for the first time, achieved two-dimensional
spectroscopy with two frequency combs [21,25,26]. They iso-
lated the photon echo signal in the frequency domain through
acousto-optic modulation, while conventional photon echo
experiments separate the signal spatially. Their approach could
be difficult to use for studying condensed-phase systems, not
only because the spectral bandwidth of each pulse should be very
broad (>100 THz) but also because it is currently limited to
the measurement of a two-dimensional spectrum at zero waiting
time. Therefore, frequency-resolving two-dimensional spec-
troscopy with collinear geometry is believed to be less general
than the method proposed here. A detailed theoretical descrip-
tion of their experiment and its relation to other approaches
were also discussed in Ref. [16].

In this paper, we refine the heuristic consideration presented
above through a theoretical analysis of DFC 3PPE spectros-
copy and aim to place the method on a solid theoretical basis.

Fig. 1. Optical layout of DFC 3PPE experiment. The dashed line
indicates the photon echo signal along the ksig =−k1 + k2 + k3 direc-
tion. BS, beam splitter; PD, photo diode; LO, local oscillator.

Previously, there have been a few theoretical studies on DFC
nonlinear spectroscopy that provide the connection between
the measured spectroscopic signals and the underlying nonlin-
ear susceptibility or response function of the material system.
Glenn and Mukamel [27] analyzed the DFC transmission
signals in terms of single- and two-photon absorptions and
Raman resonances, and they theoretically demonstrated fre-
quency down-conversion. Later, Bennett et al. [28] derived
the third-order signal expected from general quad comb spec-
troscopy, which shows the difficulties in extracting nonlinear
susceptibilities from the measured signal. Recently, we have
developed a theory for the specific case of two-pulse photon
echo spectroscopy [29]. At the outset, the present approach is
similar to these theoretical studies. However, existing theories
cannot be directly applied to DFC 3PPE spectroscopy due to
different approaches (time domain versus frequency domain)
and detailed experimental conditions. Therefore, a new theory
needs to be developed that takes into account the presence of
four pulse trains with specific time delays and the time variables
arising from them. Through the nonlinear response function
formalism combined with a proper description of comb fields,
including the finite pulse width effect, here we show that the
measurement time of the signal is indeed connected to the pop-
ulation time of 3PPE by the down-conversion factor. It turns out
that the time-domain analysis of the pulse sequence is critical in
correctly identifying the dominant contribution to the observed
signal, which is not straightforward in the frequency-domain
approaches introduced and experimentally demonstrated
before, e.g., those works in Refs. [27,28]. The theoretical 2D
spectrum is calculated for a two-level model system (2LS),
where the solvent effect is incorporated by introducing a model
spectral density of the chromophore-bath coupling [8,30].

In the next section, we present the theory of DFC 3PPE spec-
troscopy. We calculate and present the theoretical 2D spectrum
for a 2LS in Section 3. Finally, a brief summary and concluding
remarks are given in Section 4.

2. THEORY

A. Experimental Configuration

We first specify the experimental condition of DFC 3PPE spec-
troscopy for which our theory is developed [9]. We employ two
frequency combs, each characterized by the repetition frequency
ωr j and the carrier frequency ωc j ( j = 1, 2). For a coherent
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pulse train, they are related to each other by the following
relation [10,29,31]:

ωc j = nc jωr j +ωceo, j , (1)

where nc j is the integer mode number of the carrier frequency
andωceo, j =1φceo, jωr j/(2π) is the CEO frequency defined in
terms of the CEO phase shift1φceo, j between successive pulses
of the j th pulse train. To enable ASOPS, we introduce a slight
offset between the repetition frequencies of the two combs,
defined as

δωr =ωr 1 −ωr 2. (2)

In this case, the two carrier frequencies do not coincide in gen-
eral, even if 1φceo, j ( j = 1, 2) are precisely controlled to be
identical [29], and their difference is denoted as

δωc =ωc 1 −ωc 2. (3)

The pulse train of the j th comb is represented by the following
electric field [29]:

E j (r, t)=
1

2

[
E j (r, t)+ c.c.

]
,

E j (r, t)= e ik j (ωc j )·r−iωc j t
∞∑

n=−∞

Anj e−inωr j t (4)

where c.c. denotes complex conjugate, k j (ωc j ) is the wave
vector of the j th comb, and Anj is the Fourier coefficient of
the pulse envelope function A j (t) of the j th comb, which is
given by

Anj =
ωr j

2π

∫
∞

−∞

dt A j (t)e inωr j t . (5)

The comb spectrum obtained by Fourier transform of Eq. (4)
has peaks at the following frequencies:

ω=ωc j + nωr j =ωceo, j +mωr j (m, n = integers), (6)

where the second equality comes from Eq. (1).
In DFC 3PPE spectroscopy (Fig. 1), the sample interacts with

three sets of pulse trains: (i) comb 1 in the k1 direction, (ii) comb
1 delayed by τ1 from the original comb 1 field and redirected in
the k2 direction, (iii) comb 2 in the k3 direction. The waiting
time Tw between the second and third interactions is scanned
automatically by the pulse trains of combs 1 and 2, which have
slightly different pulse repetition rates as given in Eq. (2). The
signal field in the direction of −k1 + k2 + k3 is heterodyne
detected with a time-delayed comb 2 field as the local oscillator
(LO), which is redirected in the signal direction and is delayed
by τ2 from the third interaction. Note that τ1 and τ2 are explic-
itly controlled and scanned by, e.g., mechanical delay stages over
a range 0≤ τ1, τ2 ≤ τmax where τmax is of the order of coherence
decay time and is therefore much shorter than the pulse rep-
etition periods 1Tj = 2π/ωr j of the two combs. In contrast,
the waiting time Tw is determined implicitly by the repetition
frequencies of the two combs and their offset frequency δωr

given in Eq. (2) as will be shown below. In practice, the time
origin in the experiment is set to be the time when the second
and third pulses maximally overlap.

With this proposition, the total electric field incident on the
sample is the superposition of the three sets of pulse trains men-
tioned above, written as

E(r, t)= E1(r, t)+ E2(r, t)+ E3(r, t), (7)

where E1(r, t) and E2(r, t) are derived from comb 1 field and
E3(r, t) is the comb 2 field. They can be written in terms of com-
plex electric fields as in the first member of Eq. (4). Hereafter,
we take all electric fields as scalar quantities assuming a com-
mon direction of polarization. From Eq. (4), the three complex
electric fields are given as

E1(r, t)= e ik1·r−iωc 1(t+τ1)
∞∑

n=−∞

An1e−inωr 1(t+τ1),

E2(r, t)= e ik2·r−iωc 1t
∞∑

n=−∞

An1e−inωr 1t ,

E3(r, t)= e ik3·r−iωc 2t
∞∑

n=−∞

An2e−inωr 2t . (8)

Note that the time argument of t + τ1 is used in E1(r, t)
because E1(r, t) precedes E2(r, t) by τ1. In addition, E2(r, t)
and E3(r, t) overlap at t = 0 (and, formally speaking, again
at t ' 2πn/δωr for integer n, even though such a long time
behavior is not needed here) as required by the above choice of
time origin. The LO field used in the heterodyne detection of
the signal can be similarly written as follows:

ELO(r, t)= e iks ·r−iωc 2(t−τ2)
∞∑

n=−∞

An2e−inωr 2(t−τ2), (9)

because it is assumed to be delayed by τ2 from the comb 2 field
E3(r, t) and is redirected in the following direction to allow it to
interfere with the 3PPE signal field

ks =−k1 + k2 + k3. (10)

B. Third-Order Polarization

The third-order polarization generated by the incident elec-
tric field in Eq. (7) can be written in terms of the third-order
response function S(3)(t3, t2, t1) as follows [32]:

P (3)(r, t)=
∫
∞

0
dt3

∫
∞

0
dt2

∫
∞

0
dt1S(3)(t3, t2, t1)E(r, t − t3)

× E(r, t − t3 − t2)E(r, t − t3 − t2 − t1).
(11)

Since the signal is detected in the direction ks =−k1 + k2 +

k3, the polarization component P (3)(ks , t) responsible for this
signal has the following spatial dependence:

P (3)(ks , t)= P (3)(t) exp(iks · r). (12)

After expanding Eq. (11) using Eqs. (4), (7), and (8) and then
selecting terms with the factor exp(iks · r), we can write Eq. (12)
as follows:
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P (3)(ks , t)=
1

8

∫
∞

0
dt3

∫
∞

0
dt2

∫
∞

0
dt1S(3)(t3, t2, t1)

{
E ∗1 (r, t − t3)E2(r, t − t3 − t2)E3(r, t − t3 − t2 − t1)

+ E ∗1 (r, t − t3)E3(r, t − t3 − t2)E2(r, t − t3 − t2 − t1)+ E2(r, t − t3)E ∗1 (r, t − t3 − t2)E3(r, t − t3 − t2 − t1)

+ E2(r, t − t3)E3(r, t − t3 − t2)E ∗1 (r, t − t3 − t2 − t1)+ E3(r, t − t3)E ∗1 (r, t − t3 − t2)E2(r, t − t3 − t2 − t1)

+E3(r, t − t3)E2(r, t − t3 − t2)E ∗1 (r, t − t3 − t2 − t1)
}

.
(13)

According to Eq. (8), within a time span 0≤ t <π/δωr , E1 always arrives first at the sample followed by E2, then by E3. For
π/δωr ≤ t < 2π/δωr , this time ordering cannot be regarded as valid. However, we can simply disregard t larger than the lifetime
of the relevant excited state that is in general much shorter than π/δωr . Nonetheless, the interaction times represented by the time
arguments in each Ek in Eq. (13) do not necessarily follow this order. For example, the first term in the integrand corresponds to the sit-
uation where E3 interacts first with the sample at time t − t3 − t2 − t1, E2 interacts next at t − t3 − t2, then E1 at t − t3, disregarding
minor exceptions due to finite τ1 or τ2. From this consideration, only the sixth term above is consistent with the time ordering of the
pulses, and the remaining five terms will only contribute for very narrow time windows in tn (n = 1, 2, and 3) set by the pulse widths,
that is, when two or more pulses overlap significantly. Effectively, each of these five terms becomes non-negligible only if one or more
of τ1, τ2, or the implicit waiting time Tw is smaller than the pulse width and becomes a delta-function-like single point contribution
in the impulsive limit. In particular, the fourth term, where only the interaction times of E2 and E3 are not consistent with the pulse
time ordering, would be non-negligible only at small Tw and therefore can be classified as a coherent artifact [16,24,33]. In general,
for a waiting time longer than the pulse width, this coherent artifact would contribute negligibly. In the following, we develop the
theory including all six terms for completeness but, in the model calculation, take into account only the sixth term, which is expected to
predominantly contribute to the observed signal for waiting times longer than the incident pulse duration time.

With this precaution, we expand the integrand of Eq. (13) to obtain

P (3)(ks , t)=
1

8
e iks ·r

6∑
α=1

∞∑
q ,m,n=−∞

c [α]qmne iω[α]t,qmn t e iω[α]τ1,qmnτ1

×

∫
∞

0
dt3

∫
∞

0
dt2

∫
∞

0
dt1S(3)(t3, t2, t1)e i(ω[α]3 t3+ω

[α]
2 t2+ω

[α]
1 t1)

=
1

8
e iks ·r

6∑
α=1

∞∑
q ,m,n=−∞

c [α]qmn S̃(3)(ω[α]3,qmn, ω
[α]
2,qmn, ω

[α]
1,qmn)e

iω[α]t,qmn t e iω[α]τ1,qmnτ1 , (14)

where we have introduced the frequency-domain response function or nonlinear susceptibility as

S̃(3)(ω3, ω2, ω1)≡

∫
∞

0
dt3

∫
∞

0
dt2

∫
∞

0
dt1S(3)(t3, t2, t1)e i(ω3t3+ω2t2+ω1t1) (15)

and the following notations:

ωn
j =ωc j + nωr j , (16)

c [1]qmn = A∗q1 Am1 An2, c [2]qmn = A∗q1 An1 Am2, c [3]qmn = A∗m1 Aq1 An2,

c [4]qmn = A∗n1 Aq1 Am2, c [5]qmn = A∗m1 An1 Aq2, c [6]qmn = A∗n1 Am1 Aq2,
(17)

ω
[1]
t,qmn =ω

q
1 −ω

m
1 −ω

n
2 , ω

[2]
t,qmn =ω

q
1 −ω

n
1 −ω

m
2 , ω

[3]
t,qmn =ω

m
1 −ω

q
1 −ω

n
2 ,

ω
[4]
t,qmn =ω

n
1 −ω

q
1 −ω

m
2 , ω

[5]
t,qmn =ω

m
1 −ω

n
1 −ω

q
2 , ω

[6]
t,qmn =ω

n
1 −ω

m
1 −ω

q
2 ,

(18)

ω
[1]
τ1,qmn =ω

[2]
τ1,qmn =ω

q
1 , ω

[3]
τ1,qmn =ω

[5]
τ1,qmn =ω

m
1 , ω

[4]
τ1,qmn =ω

[6]
τ1,qmn =ω

n
1 , (19)

ω
[1]
1,qmn =ω

[3]
1,qmn =ω

n
2 , ω

[2]
1,qmn =ω

[5]
1,qmn =−ω

[4]
1,qmn =−ω

[6]
1,qmn =ω

n
1 ,

ω
[1]
2,qmn =ω

m
1 +ω

n
2 , ω

[2]
2,qmn =ω

n
1 +ω

m
2 , ω

[3]
2,qmn =−ω

m
1 +ω

n
2 ,

ω
[4]
2,qmn =−ω

n
1 +ω

m
2 , ω

[5]
2,qmn =−ω

[6]
2,qmn =−ω

m
1 +ω

n
1 ,

ω
[α]
3,qmn =−ω

[α]
t,qmn (α = 1, · · · , 6).

(20)
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The electric field E (3)(ks , t) generated by P (3)(ks , t) is, within
the slowly varying-amplitude approximation, given as [32,34]

E (3)(ks , t)∝ i P (3)(ks , t). (21)

C. Heterodyne-Detected Signal

When the signal is heterodyne detected with the LO, which is
the redirected and delayed comb 2 field, the signal field at the
square detector is given as the superposition of ELO and the
third-order signal field E (3) as follows:

I (t)= |ELO(ks , t)+ E (3)(ks , t)|2

= |ELO(ks , t)|2 + |E (3)(ks , t)|2

+ 2 Re[E ∗LO(ks , t)E (3)(ks , t)]. (22)

In general, E (3) is much weaker than ELO, making the second
term on the right-hand side of this equation negligible. After
subtracting the first term, which is a known quantity, we obtain
the last term, which is a time-dependent interferogram contain-
ing information on the material response. Using Eqs. (9), (14),
and (21), it can be written as

2 Re
[
E ∗LO(ks , t)E (3)(ks , t)

]
∝ 2Im[E ∗LO(ks , t)P (3)(ks , t)]

=
1

4
Im

[
6∑
α=1

∞∑
p,q ,m,n=−∞

A∗p2c [α]qmn

× S̃(3)
(
ω
[α]
3,qmn, ω

[α]
2,qmn, ω

[α]
1,qmn

)
× e

i
[
ω

p
2+ω

[α]
t,qmn

]
t
e iω[α]τ1,qmnτ1e−iω p

2 τ2

]
. (23)

The dependence of this interferogram on t is determined by the
frequency factors ω p

2 +ω
[α]
t,qmn in the exponent, which can be

written as follows using Eqs. (2), (16), and (18):

ω
p
2 +ω

[1]
t = (q −m)δωr + (p + q −m − n)ωr 2,

ω
p
2 +ω

[2]
t = (q − n)δωr + (p + q −m − n)ωr 2,

ω
p
2 +ω

[3]
t =−(q −m)δωr + (p − q +m − n)ωr 2,

ω
p
2 +ω

[4]
t =−(q − n)δωr + (p − q −m + n)ωr 2,

ω
p
2 +ω

[5]
t = (m − n)δωr + (p − q +m − n)ωr 2,

ω
p
2 +ω

[6]
t =−(m − n)δωr + (p − q −m + n)ωr 2. (24)

In the experiment, only the slowly oscillating interference terms
are selectively detected with a low-pass filter or a slow-response
detector. Under this condition, the terms with non-zero coef-
ficients of ωr 2 would exhibit high-frequency oscillation due to
the relation ωr 2 ≈ 106 δωr and therefore are not detected [29].

Then, only the terms with the following values of p and associ-
ated frequency factors survive when detecting the signal in time
t as follows:

α = 1 : p =−q +m + n, ω
p
2 +ω

[1]
t = (q −m)δωr ,

α = 2 : p =−q +m + n, ω
p
2 +ω

[2]
t = (q − n)δωr ,

α = 3 : p = q −m + n, ω
p
2 +ω

[3]
t =−(q −m)δωr ,

α = 4 : p = q +m − n, ω
p
2 +ω

[4]
t =−(q − n)δωr ,

α = 5 : p = q −m + n, ω
p
2 +ω

[5]
t = (m − n)δωr ,

α = 6 : p = q +m − n, ω
p
2 +ω

[6]
t =−(m − n)δωr .

(25)

The heterodyne-detected signal in Eq. (23) can then be
written as

2 Re
[
E ∗LO(ks , t)E (3)(ks , t)

]
∝ 2 Im[E ∗LO(ks , t)P (3)(ks , t)]

=
1

4
Im

[
∞∑

L,M,N=−∞

BL MNe i Lδωr t e iωM
1 τ1e−iωN

2 τ2

]
,

(26)

where the coefficient BL MN is given by

BL MN = A∗M,1 AM−L,1 A∗N,2 AL+N,2

×

[
S̃(3)(−Lωr 1 +ω

L+N
2 , ωM−L

1 +ωL+N
2 , ωL+N

2 )

+ S̃(3)(−Lωr 1 +ω
L+N
2 , ωM−L

1 +ωL+N
2 , ωM−L

1 )

+ S̃(3)(−Lωr 1 +ω
L+N
2 ,−ωM

1 +ω
L+N
2 , ωL+N

2 )

+ S̃(3)(−Lωr 1 +ω
L+N
2 ,−ωM

1 +ω
L+N
2 ,−ωM

1 )

+ S̃(3)(−Lωr 1 +ω
L+N
2 ,−Lωr 1, ω

M−L
1 )

+ S̃(3)(−Lωr 1 +ω
L+N
2 ,−Lωr 1,−ω

M
1 )
]

.

(27)

D. Two-Dimensional Spectrum

To obtain a 2D spectrum from the heterodyne-detected signal in
Eq. (26), we first define a complex function S(t; τ1, τ2) as

S(t; τ1, τ2)=
1

8

∞∑
L,M,N=−∞

BL MNe i Lδωr t e iωM
1 τ1e−iωN

2 τ2 .

(28)

The imaginary part of S(t; τ1, τ2), which we denote as
SI (t; τ1, τ2), is directly related to the signal as follows:

2 Im[E ∗LO(ks , t)P (3)(ks , t)] = 2SI (t; τ1, τ2). (29)

We then perform the 2D Fourier transform of S(t; τ1, τ2)with
respect to τ1 and τ2 to obtain
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S̃(t;ωτ1, ωτ2)

≡

∫
∞

−∞

dτ1

∫
∞

−∞

dτ2S(t; τ1, τ2)e iωτ1τ1e iωτ2τ2

=
1

8

∞∑
L,M,N=−∞

BL MNe i Lδωr t
∫
∞

−∞

dτ1e i(ωτ1+ω
M
1 )τ1

×

∫
∞

−∞

dτ2e i(ωτ2−ω
N
2 )τ2

=
π2

2

∞∑
L,M,N=−∞

BL MNe i Lδωr tδ(ωτ1 +ω
M
1 )δ(ωτ2 −ω

N
2 ).

(30)

From Eq. (29), the 2D signal can be defined as the 2D Fourier
transform of 2SI (t; τ1, τ2). It can be written in terms of
S̃(t;ωτ1, ωτ2) above as follows:

2S̃I (t;ωτ1, ωτ2)

≡ 2
∫
∞

−∞

dτ1

∫
∞

−∞

dτ2SI (t; τ1, τ2)e iωτ1τ1e iωτ2τ2

= Im
[

S̃(t;ωτ1, ωτ2)+ S̃(t; −ωτ1,−ωτ2)
]

− i Re
[

S̃(t;ωτ1, ωτ2)− S̃(t; −ωτ1,−ωτ2)
]

. (31)

From Eqs. (30) and (31), we find that the 2D signal
2S̃I (t;ωτ1, ωτ2) has peaks at (ωτ1, ωτ2)=±(−ω

M
1 , ω

N
2 )

for integers M and N, displaying a 2D comb-like peak arrange-
ment with comb spacings ofωr 1 andωr 2 along theωτ1 andωτ2

axes, respectively. Moreover, the amplitude of the signal at a
given frequency point (ωτ1, ωτ2) is determined by BL MN with
the following values of M and N:

(M̄, N̄)= ((∓ωτ1 −ωc 1)/ωr 1, (±ωτ2 −ωc 2)/ωr 2), (32)

where the upper signs come from S̃(t, ωτ1, ωτ2) and the lower
signs come from S̃(t,−ωτ1,−ωτ2) in Eq. (31).

The 2D signal in Eq. (31) depends on the detection time vari-
able t according to Eq. (30). Because the t dependence is present
only in the factor exp(i Lδωr t), we focus on the summation over
L and approximate it as an integral over a frequency variable ω
using the correspondenceω↔ Lδωr as follows:

∞∑
L=−∞

BL MNe i Lδωr t
'

1

δωr

∫
∞

−∞

dω B̄MN(ω)e iωt

=
2π

δωr

1

2π

∫
∞

−∞

dω B̄MN(ω)e−iω(−t)

=
2π

δωr

¯̄BMN(−t) (33)

where B̄MN(ω)= B(ω/δωr )MN and ¯̄BMN(t) denotes the inverse
Fourier transform of B̄MN(ω). Then, S̃(t;ωτ1, ωτ2) in Eq. (30)
can be rewritten as

S̃(t;ωτ1, ωτ2)=
π3

δωr

∞∑
M,N=−∞

¯̄BMN(−t)

× δ(ωτ1 +ω
M
1 )δ(ωτ2 −ω

N
2 ). (34)

Similarly, the time-domain function S(t; τ1, τ2) in Eq. (28) can
be expressed as

S(t; τ1, τ2)=
π

4δωr

∞∑
M,N=−∞

¯̄B MN(−t)e iωM
1 τ1e−iωN

2 τ2 .

(35)

As in our previous study [29], we also introduce the amplitude
function F (t;ωτ1, ωτ2) of the 2D signal as

F (t;ωτ1, ωτ2)=
π3

δωr

¯̄BM̄(ωτ1)N̄(ωτ2)
(−t), (36)

where M̄(ωτ1) and N̄(ωτ2) depend on ωτ1 and ωτ2,
respectively, through the following relations:

M̄(ωτ1)=−(ωτ1 +ωc 1)/ωr 1,

N̄(ωτ2)= (ωτ2 −ωc 2)/ωr 2, (37)

which correspond to the upper set of signs in Eq. (32). Finally,
the 2D spectrum S2D(t;ωτ1, ωτ2), which is the amplitude of
the signal at a given point (ωτ1, ωτ2) in the 2D frequency space,
can be constructed using F (t;ωτ1, ωτ2) as follows:

S2D(t;ωτ1, ωτ2)

= Im [F (t;ωτ1, ωτ2)+ F (t; −ωτ1,−ωτ2)]

− i Re [F (t;ωτ1, ωτ2)− F (t; −ωτ1,−ωτ2)] (38)

in analogy with Eq. (31). Note that F (t; −ωτ1,−ωτ2) in this

equation is given by (π3/δωr )
¯̄BM̄(−ωτ1)N̄(−ωτ2)

(−t) according
to Eq. (36).

E. Waiting Time Dependence of the 2D Spectrum

We now further simplify the 2D spectrum derived above
and investigate its dependence on the waiting time Tw.
We first consider B̄MN(ω) introduced above in Eq. (33)
and write it explicitly as follows using Eq. (27) and the
correspondenceω↔ Lδωr :

B̄MN(ω)= G MN(ω)
[

S̃(3)(ωN
2 −ω, ω

M
1 +ω

N
2 −ω, ω

N
2

+ωr 2ω/δωr )+ S̃(3)(ωN
2 −ω, ω

M
1 +ω

N
2

−ω, ωM
1 −ωr 1ω/δωr )+ S̃(3)(ωN

2 −ω,−ω
M
1

+ωN
2 +ωr 2ω/δωr , ω

N
2 +ωr 2ω/δωr )

+ S̃(3)(ωN
2 −ω,−ω

M
1 +ω

N
2 +ωr 2ω/δωr ,−ω

M
1 )

+ S̃(3)(ωN
2 −ω,−ωr 1ω/δωr , ω

M
1 −ωr 1ω/δωr )

+S̃(3)(ωN
2 −ω,−ωr 1ω/δωr ,−ω

M
1 )
]
, (39)
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where we have introduced the function G MN(ω) as

G MN(ω)= A∗M,1 AM−ω/δωr ,1 A∗N,2 Aω/δωr+N,2. (40)

For a pulse envelope with finite width, the Fourier coefficient
Anj of the envelope function is nonzero only for a limited range
of n centered at zero. This effectively determines the range of ω
to consider in Eq. (39). To be concrete, we assume that the pulse
envelope is given by a Gaussian function of the form

A j (t)=
1

σ j
√

2π
e−t2/(2σ 2

j ). (41)

Then, Anj can be written as follows using Eq. (5):

Anj =
ωr j

2π
e−n2σ 2

j ω
2
r j /2, (42)

and G MN(ω) in Eq. (40) becomes

G MN(ω)=
ω2

r 1ω
2
r 2

16π4
e−σ

2
1 ω

2
r 1(M−ω/(2δωr ))

2
−σ 2

2 ω
2
r 2(N+ω/(2δωr ))

2
−(ω2/(2δωr )

2)(σ 2
1 ω

2
r 1+σ

2
2 ω

2
r 2). (43)

We define the range of x in which the function G(x )=
exp(−σ 2

j ω
2
r j x

2/2) is non-negligible as

−a/(σ jωr j )≤ x ≤ a/(σ jωr j ) (a > 0) (44)

using the parameter a (∼2 to 5) that controls the range and fur-
ther note that σ1 ' σ2 andωr 1 'ωr 2. Then, the corresponding
ranges ofω/δωr , M, and N, over which G MN(ω) in Eq. (43) is
non-negligible, can be found as

− a/(σ jωr j )≤ω/δωr ≤ a/(σ jωr j ),

− 3a/
(√

2σ jωr j

)
≤M, N ≤ 3a/

(√
2σ jωr j

)
. (45)

Therefore, the range of ω where B̄MN(ω) is non-negligible is
given by

−aδωr /(σ jωr j )≤ω≤ aδωr /(σ jωr j ). (46)

Typical magnitudes of the repetition frequency variables
are ωr j ∼ 1 GHz and δωr /ωr j ∼ 10−6. Then, choos-
ing a ∼ 3 and σ j = 10 fs, we have a/(σ jωr j )∼ 105 and
aδωr /(σ jωr j )∼ 0.3 GHz or 0.01 cm−1. Therefore, the
extremal values ofω to consider are somewhat smaller thanωr j .
Based on this analysis, we can safely simplify the arguments in
the response functions as follows:

ωN
2 −ω'ω

N
2 ,

ωM
1 +ω

N
2 −ω'ω

M
1 +ω

N
2 . (47)

Then, to a very good approximation, B̄MN(ω) in Eq. (39) can be
written as

B̄MN(ω)' G MN(ω)
[
S̃(3)(ωN

2 , ω
M
1 +ω

N
2 , ω

N
2 +ωr 2ω/δωr )

+ S̃(3)(ωN
2 , ω

M
1 +ω

N
2 , ω

M
1 −ωr 1ω/δωr )

+ S̃(3)(ωN
2 ,−ω

M
1 +ω

N
2 +ωr 2ω/δωr , ω

N
2 +ωr 2ω/δωr )

+ S̃(3)(ωN
2 ,−ω

M
1 +ω

N
2 +ωr 2ω/δωr ,−ω

M
1 )

+ S̃(3)(ωN
2 ,−ωr 1ω/δωr , ω

M
1 −ωr 1ω/δωr )

+S̃(3)(ωN
2 ,−ωr 1ω/δωr ,−ω

M
1 )
]
.

(48)

Using this result, ¯̄BMN(t) introduced in Eq. (33) can be calcu-
lated by inverse Fourier transform as

¯̄BMN(t)=
1

2π

∫
∞

−∞

dω B̄MN(ω)e−iωt . (49)

Because the frequency variable ω appears in the second and
the third arguments of the response functions in Eq. (48),
the inverse Fourier transform can be carried out analytically
only for some of the terms. In particular, as pointed out in
Section 2.B, the sixth term is expected to make the largest con-
tribution to B̄MN(ω) considering the time ordering of pulses.
In addition, according to Eq. (45), the extremal values of M
and N to consider are about ±105, and therefore ωM

1 and ωN
2

appearing in Eq. (48) are rather narrowly distributed around the
mid-points of ωc 1 and ωc 2, respectively. Then, the sixth term
G MN(ω)S̃(3)(ωN

2 ,−ωr 1ω/δωr ,−ω
M
1 ) represents a rephas-

ing quantum transition pathway consistent with the signal
wave vector ks =−k1 + k2 + k3 because the signs of the two
frequencies in the first and third arguments of S̃(3) are opposite.
From these considerations, we hereafter focus on the sixth term
and write its inverse Fourier transform as

¯̄B [6]MN(t)=
1

2π

∫
∞

−∞

dω B̄ [6]MN(ω)e
−iωt

'
1

2π

∫
∞

−∞

dω e−iωt G MN(ω)

× S̃(3)(ωN
2 ,−ωr 1ω/δωr ,−ω

M
1 ), (50)

where the superscript “[6]” denotes the contribution of the sixth
term. We also introduce the inverse Fourier transform g MN(t)
of G MN(ω), defined as

g MN(t)=
1

2π

∫
∞

−∞

dω G MN(ω)e−iωt

=
ω2

r 1ω
2
r 2

16π4

√
1

4πa
e
β2
+4αγ
4α e−iβt/ (2α)e−t2/(4α), (51)

whereα,β, andγ are given as
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α =
σ 2

1ω
2
r 1 + σ

2
2ω

2
r 2

2(δωr )
2 ,

β =
Mσ 2

1ω
2
r 1 − Nσ 2

2ω
2
r 2

δωr
,

γ =−M2σ 2
1ω

2
r 1 − N2σ 2

2ω
2
r 2. (52)

Then, Eq. (50) can be written as follows:

¯̄B [6]MN(t)=
δωr

ωr 1

∫
∞

−∞

dτ g MN(t − τ)S̄(ωN
2 ,−(δωr /ωr 1)τ,−ω

M
1 )

=
δωr

ωr 1

∫
∞

0
dτ g MN(t + τ)S̄(ωN

2 , (δωr /ωr 1)τ,−ω
M
1 ),

(53)

where S̄(ω3, t2, ω1) is the 2D Fourier transform of the time-
domain response function S(3)(t3, t2, t1) with respect to t1 and
t3. In Eq. (53), we have utilized the convolution theorem for two
functions with scaled variables as follows:

F (aω)G(cω)=
∫
∞

−∞

dt f (t)e iaωt

∫
∞

−∞

dt ′g (t ′)e i cωt ′

=
1

|ac |

∫
∞

−∞

dτ ′ e iωτ ′
∫
∞

−∞

dτ f (τ/a)g
(
τ ′ − τ

c

)
,

(54)

and the condition that S̄(ω3, t2, ω1)= 0 for t2 < 0 was also
used [8]. We can see that, for the sixth term, the 2D signal can
be expressed as the convolution of the function S̄(ω3, t2, ω1)

with a Gaussian function. This indicates that the waiting time
dependence of the response function could be extracted from
the t dependence of the signal, but its amplitude might be
modulated by the Gaussian pulse envelope. We also note that
this effective waiting time Tw is scaled down from the labora-
tory detection time t by the frequency down-conversion factor
δωr /ωr 1 as follows:

Tw = (δωr /ωr 1)t . (55)

The 2D spectrum due to the sixth term, S [6]2D(t;ωτ1, ωτ2), can
be obtained from the following amplitude function, which is
derived from Eqs. (36), (37), and (53):

F [6](t;ωτ1, ωτ2)

=
π3

δωr

¯̄B [6]
M̄(ωτ1)N̄(ωτ2)

(−t)

=
π3

ωr 1

∫
∞

0
dτ g M̄(ωτ1)N̄(ωτ2)

(−t + τ)

× S̄(ωc 2 + N̄(ωτ2)ωr 2, (δωr /ωr 1)τ,−ωc 1 − M̄(ωτ1)ωr 1)

=
π3

ωr 1

∫
∞

0
dτ g M̄(ωτ1)N̄(ωτ2)

(−t + τ)

× S̄(ωτ2, (δωr /ωr 1)τ, ωτ1)

(56)

by applying Eq. (38) as follows:

S [6]2D(t;ωτ1, ωτ2)

= Im
[
F [6](t;ωτ1, ωτ2)+ F [6](t; −ωτ1,−ωτ2)

]
− i Re

[
F [6](t;ωτ1, ωτ2)− F [6](t; −ωτ1,−ωτ2)

]
.

(57)

3. MODEL CALCULATION

A. Model Description

We demonstrate the theory of the DFC 3PPE developed above
by calculating the derived 2D spectrum using a model response
function for a two-level system (2LS). In this model composed
of the ground state g and the excited state e (see Sections 5.2–
5.4, 7.6 of Ref. [8]), the third-order response function has the
following expression:

S(3)(t3, t2, t1)=
(

i
~

)3

θ(t3)θ(t2)θ(t1)

×

4∑
n=1

[
Rn(t3, t2, t1)− R∗n(t3, t2, t1)

]
(58)

in terms of Rn , given by

R1(t3, t2, t1)=µ4e−iωe g t3−iωe g t1 F1(t3, t2, t1),

R2(t3, t2, t1)=µ4e−iωe g t3+iωe g t1 F2(t3, t2, t1),

R3(t3, t2, t1)=µ4e−iωe g t3+iωe g t1 F3(t3, t2, t1),

R4(t3, t2, t1)=µ4e−iωe g t3−iωe g t1 F4(t3, t2, t1). (59)

Here µ= |µe g | is the absolute value of the transition dipole
moment, ωe g is the ensemble-averaged transition frequency,
and Fn(t3, t2, t1) is the line shape function given as follows
under the second-order cumulant expansion approximation
[32] and the short-time approximation for the coherence time
variables t1 and t3 [35]:

ln Fn(t3, t2, t1)= fn(t2)− δ2
n(t2)t

2
1/2−1

2
n(t2)t

2
3/2

+ Hn(t2)t1t3 + i Qn(t2)t3. (60)

Explicit expressions of fn(t), δn(t), 1n(t), Hn(t), and Qn(t)
can be found in Eqs. (5.36)–(5.41) of Ref. [8] for a general
multi-level system. For the current 2LS, they are simplified
as follows:

fn(t)= 0 (n = 1, · · · , 4),

δ2
n(t)=1

2
n(t)=Ce e (0) (n = 1, · · · , 4),

H1(t)=−H2(t)=−H3(t)= H4(t)=−Re[Ce e (t)],

Q1(t)= Q2(t)= Im
[
2C̄e e (0)− C̄e e (t)− C̄e e (−t)

]
,

Q3(t)= Q4(t)= 0, (61)
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where the frequency-frequency time correlation functions
(FFCFs) and related quantities are defined as follows:

Cab(t)=
〈
δVag (t)δVbg (0)

〉
Bath/~

2
=
〈
δωag (t)δωbg (0)

〉
Bath,

g ab(t)=
∫ t

0
dτ1

∫ τ1

0
dτ2Cab(τ2)=

∫ t

0
dτ1(t − τ1)Cab(τ1),

C̄ab(t)=
∫ t

0
dτCab(τ )=

dg ab(t)
dt

(62)

in terms of the fluctuations in the energy gap δVag (t)=
Vag (t)− 〈Vag (t)〉Bath.

To specify the FFCF, we introduce the spectral density ρ(ω),
representing the chromophore-bath couplings [30] as follows:

ρ(ω)=
C̃ ′′(ω)
πω2

,

C̃ ′′(ω)= i
∫
∞

−∞

dtC I (t)e iωt
= i C̃ I (ω)=−Im

[
C̃ I (ω)

]
,

(63)

where C I (t) is the imaginary part of C(t)≡Ce e (t). Note that
C̃ ′′(ω) and ρ(ω) are real and odd functions of ω due to the
general relation C(−t)=C∗(t) for a quantum time correlation
function C(t). The FFCF can be written in terms of ρ(ω) as
follows [8]:

C(t)=
∫
∞

0
dω ω2 coth (β~ω/2) cos(ωt)ρ(ω)

− i
∫
∞

0
dω ω2 sin(ωt)ρ(ω), (64)

which stems from the detailed balance relation C̃(−ω)=
e−β~ωC̃(ω) for the Fourier transform C̃(ω) of C(t) [32], where
β−1
= kBT, with the Boltzmann constant kB and the absolute

temperature T. The quantities in Eq. (61) can then be expressed
in terms ofρ(ω) as follows:

�2
≡C(0)= δ2

n(t)=1
2
n(t)

=

∫
∞

0
dω ω2 coth (β~ω/2) ρ(ω) (n = 1, · · · , 4),

H(t)≡ Re[C(t)] =−H1(t)= H2(t)= H3(t)=−H4(t)

=

∫
∞

0
dω ω2 coth (β~ω/2) cos(ωt)ρ(ω),

Q(t)≡−Q1(t)
/

2=−Q2(t)/2

=

∫
∞

0
dω ω cos(ωt)ρ(ω)− λ

/
~,

(65)

where the solvent reorganization energyλ is defined as

λ= ~
∫
∞

0
dω ωρ(ω). (66)

Now, the four response function components in Eq. (59) can be
written as

R1(t3, t2, t1)=µ
4e−iωe g t1−i[ωe g+2Q(t2)]t3 e−�

2t2
1 /2−�

2t2
3 /2−H(t2)t1t3 ,

R2(t3, t2, t1)=µ
4e iωe g t1−i[ωe g+2Q(t2)]t3 e−�

2t2
1 /2−�

2t2
3 /2+H(t2)t1t3 ,

R3(t3, t2, t1)=µ
4e iωe g t1−iωe g t3 e−�

2t2
1 /2−�

2t2
3 /2+H(t2)t1t3 ,

R4(t3, t2, t1)=µ
4e−iωe g t1−iωe g t3 e−�

2t2
1 /2−�

2t2
3 /2−H(t2)t1t3 ,

(67)

using the quantities in Eq. (65).
In the model calculation, we employ the Ohmic spectral den-

sity with an exponential cutoff function [8] as follows:

ρ(ω)=
λ

~ω0

e−ω/ω0

ω
(ω≥ 0), (68)

which yields

�2
'

2λ

β~2
,

H(t)'
2λ

β~2

1

1+ω2
0t2
,

Q(t)=−
λ

~
ω2

0t2

1+ω2
0t2
, (69)

where we have taken the high temperature limit (β→ 0) for�2

and H(t), which is expected to introduce at most 1% error at
room temperature with the choice ofω0 = 30 cm−1.

B. Model Response Function

To evaluate the 2D spectrum S [6]2D(t;ωτ1, ωτ2) in Eq. (57), we
first consider the 2D Fourier transform S̄(ω3, t2, ω1) of the
third-order response function

S̄(ω3, t2, ω1)=

∫
∞

0
dt3

∫
∞

0
dt1S(3)(t3, t2, t1)e i(ω3t3+ω1t1).

(70)

Since S(3)(t3, t2, t1) is given by Eqs. (58) and (67) in the
present model, S̄(ω3, t2, ω1) is composed of integrals of the
following form:

I (χ3, χ1)=

∫
∞

0
dt3

∫
∞

0
dt1e iχ1t1+iχ3t3e−�

2t2
1 /2−�

2t2
3 /2−Ht1t3

= 2
∫
∞

0
dz1e i(χ1+χ3)z1/

√
2e−λ1z2

1/2

×

∫ z1

0
dz3 cos

[
(χ1 − χ3)z3/

√
2
]

e−λ3z2
3/2,

(71)

where we have transformed the integration variables in the
second step to eliminate the cross term in the exponent as shown
in Appendix A. Taking the upper limit of the inner integral to
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infinity, we can obtain an approximate expression of this integral
as follows:

I (χ3, χ1)∼= 2
∫
∞

0
dz1e i(χ1+χ3)z1/

√
2e−λ1z2

1/2

×

∫
∞

0
dz3 cos

[
(χ1 − χ3)z3/

√
2
]

e−λ3z2
3/2

=
π
√
λ1λ3

e−(χ1−χ3)
2/(4λ3)

×

[
e−(χ1+χ3)

2/(4λ1) +
2i
√
π

D
(
χ1 + χ3

2
√
λ1

)]
,

(72)

where D(x )= (1/2)
∫
∞

0 dτ e−τ
2/4 sin xτ = e−x2 ∫ x

0 dτ e τ
2

is
the Dawson function [36]. Compared to some previous
approaches [8], the response function evaluated with Eq. (72)
would be more desirable because it can capture the correlation
between the two frequency variables.

The eight terms in Eq. (58) can be expressed in the form of
Eq. (72) with differentχ1,3 andλ1,3 as follows:

R1 : χ1 =ω1 −ωe g , χ3 =ω3 −ωe g − 2Q(t2),
R2 : χ1 =ω1 +ωe g , χ3 =ω3 −ωe g − 2Q(t2),
R3 : χ1 =ω1 +ωe g , χ3 =ω3 −ωe g ,

R4 : χ1 =ω1 −ωe g , χ3 =ω3 −ωe g ,

R∗1 : χ1 =ω1 +ωe g , χ3 =ω3 +ωe g + 2Q(t2),
R∗2 : χ1 =ω1 −ωe g , χ3 =ω3 +ωe g + 2Q(t2),
R∗3 : χ1 =ω1 −ωe g , χ3 =ω3 +ωe g ,

R∗4 : χ1 =ω1 +ωe g , χ3 =ω3 +ωe g ,

(73)

R1, R4, R∗1 , R∗4 : λ1 =�
2 [2+ (~/λ) Q(t2)] , λ3 =−�

2 (~/λ) Q(t2),
R2, R3, R∗2 , R∗3 : λ1 =−�

2 (~/λ) Q(t2), λ3 =�
2 [2+ (~/λ) Q(t2)] .

(74)

From Eq. (69), we note the following inequalities:

−~/λ≤ Q(t2)≤ 0,

0≤ H(t2)≤�2,

�2
≤�2 [2+ (~/λ) Q(t2)]≤ 2�2,

0≤−�2 (~/λ) Q(t2)≤�2, (75)

which show that both λ1 and λ3 are non-negative. With the fol-
lowing choice of parameters:

ωe g = 10000 cm−1
= 299.8 THz,

λ/~= 500 cm−1,

ω0 = 30 cm−1,

kB T/~= 1/(β~)= 208.5 cm−1(T = 300 K), (76)

we obtain

�= 456.6 cm−1
,

−500 cm−1
≤ Q(t2)≤ 0 cm−1. (77)

From Eqs. (72), (75), and (77), we can see that S̄(ω3, t2, ω1)

is the sum of eight terms that have peaks at or around one of
(±ωe g ,±ωe g ) with width on the order of 500 cm−1. For
example, since χ1 ± χ3 should be small to produce large signal
according to Eq. (72), the signal from R1 would appear in the
first quadrant near (ωe g , ωe g + 2Q(t2)) according to Eq. (73).
Proceeding analogously, we can establish the location of signals
from the eight terms of S̄(ω3, t2, ω1) as follows: R1 and R4 in
the first quadrant, R2 and R3 in the second, R∗1 and R∗4 in the
third, and R∗2 and R∗3 in the fourth. On the other hand, terms
of S̄(−ω3, t2,−ω1) would appear as follows: R1 and R4 in
the third quadrant, R2 and R3 in the fourth, R∗1 and R∗4 in the
second, and R∗2 and R∗3 in the first. Since the signal amplitude
is modulated by g M̄(ωτ1)N̄(ωτ2)

(t) according to Eq. (56), we also
need to consider its behavior. From Eqs. (37), (51), and (52),
we can see that g M̄(ωτ1)N̄(ωτ2)

(t) is non-negligible only in the
second quadrant and g M̄(−ωτ1)N̄(−ωτ2)

(t) in the fourth quad-
rant. Therefore, the 2D spectrum in Eq. (57) would arise only
from the rephasing pathways R2 and R3, and it would appear in
the second and fourth quadrants with inversion symmetry with
respect to the origin.

C. Model 2D Spectrum

Based on the model described above, we calculate the 2D spec-
trum expected from the DFC 3PPE experiment. We first note
that the summation over the comb indices M and N appear-
ing in Eq. (26) is not necessary because of the two Dirac delta
functions obtained in Eq. (30) that impose the relation between
these indices and the frequency variables (ωτ1, ωτ2) as given

by Eq. (37). In addition, the summation over the index L in
Eq. (26) is replaced by the integral overω in Eq. (33). Therefore,
we will directly evaluate the 2D spectrum using Eq. (57) without
intermediate calculation of a time-domain interferogram.

In the computation, we employ the molecular parameters
defined in Eqs. (76) and (77) and the following comb field
parameters:

σ1 = σ2 = 10 fs (FWHM bandwidth= 23 THz or 1270 cm−1
),

ω̄c = (ωc 1 +ωc 2)/2= 10000 cm−1
= 299.8 THz,

δωc =ωc 1 −ωc 2 = 1.5× 10−3 cm−1
= 44.97 MHz,

ωr 1 = 0.01 cm−1
= 299.8 MHz,

δωr = 1.5× 10−9 cm−1
= 44.97 Hz.

(78)

The computation was performed using the GNU Octave
program [37], which provides means to evaluate the Dawson
function and the convolution integral in Eq. (56). The 2D
spectra obtained with these parameters are displayed in Fig. 2
for the effective waiting times Tw = 100, 200, 300, 400, 500 fs,
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Fig. 2. Theoretical 2D spectra of DFC 3PPE of a two-level system. (a)–(e) Real parts at population time Tw = 100, 200, 300, 400, 500 fs, respec-
tively. (f )–(j) Imaginary parts at Tw = 100, 200, 300, 400, 500 fs, respectively. The contour lines are drawn in increments of 1× 10−12 in (a)–(e) and
in increments of 5× 10−13 in (f )–(j).

corresponding to laboratory detection time t = 0.6667, 1.333,
2.000, 2.666, 3.333 ns, respectively. Since the spectrum appears
in the second and fourth quadrants with inversion symmetry as
shown above, we only plot the unique spectrum in the second
quadrant as a function of (−ωτ1, ωτ2). The real parts of the
spectra in Figs. 2(a)–2(e) show characteristic absorptive spectral
line shape, and the imaginary parts in Figs. 2(f )–2(j) exhibit
dispersive line shape with a nodal line between the positive and
negative signals. As the waiting time Tw increases, the signal
loses its diagonal correlation, and also the amplitude decreases
due to dephasing. The peak positions are slightly red-shifted
along the ωτ2 axis, which arises from the solvation dynamics
described by Q(t2). These numerical calculation results show
that DFC 3PPE spectroscopy reproduces all the spectral features
expected in a conventional 2D photon echo spectrum obtained
by using a single mode-locked femtosecond laser.

4. SUMMARY AND A FEW CONCLUDING
REMARKS

In summary, we have presented a theory of DFC 3PPE spectros-
copy to understand the expected spectral features in terms of
the underlying third-order response function. The theory is an
extension of our previous work on photon echo spectroscopy,
which employs two optical frequency comb lasers. Here, we
have shown that the detection time of the heterodyne-detected
signal interferogram is transparently related to the population
or waiting time of 3PPE spectroscopy by the frequency down-
conversion factor of DFC. In addition, the calculated 2D model
spectra closely resemble the 2D spectra expected from conven-
tional 3PPE measurements employing a single mode-locked
laser and a non-collinear spectral interferometric detection
scheme. It is therefore shown that DFC 3PPE spectroscopy
could be a robust alternative to conventional 3PPE methods.

In the experimental configuration considered here, the
ASOPS enabled by the repetition frequency offset δωr appears
in the measurement time of the interferogram, which is related
to the population time. It would be possible to devise modified
configurations that could better exploit the ASOPS feature of

DFC. For instance, by temporally interlocking the pulse trains
in an alternating order, i.e., comb1-comb2-comb1-comb2
or comb1-comb2-comb2-comb1, ASOPS could be realized
for the coherence times between the first and second pulses or
between the third pulse and the detection time. It would also
be worthwhile to explore the applicability of DFC to 2D spec-
troscopy in the collinear pump-probe geometry [38,39], which
is another method of widespread use. The theory presented in
this paper could be applied to these cases and promote further
development of DFC nonlinear spectroscopy.

APPENDIX A: INTEGRAL IDENTITY FOR
RESPONSE FUCNTION EVALUATION

Here we derive an integral identity for I (χ3, χ1) in Eq. (71) as
follows:

I (χ3, χ1)=

∫
∞

0
dt3

∫
∞

0
dt1e iχ1t1+iχ3t3e−�

2t2
1 /2−�

2t2
3 /2−Ht1t3 ,

(A1)

which is a 2D half Fourier transform of a Gaussian with bilin-
ear coupling. If we introduce a symmetric real matrix A and a
column vector t as

A=
(
�2 H
H �2

)
,

tT
= (t1, t3),

(A2)

I (χ3, χ1) can be written as

I (χ3, χ1)=

∫
∞

0
dt3

∫
∞

0
dt1e iχ1t1+iχ3t3 e−tT At/2. (A3)

There exists an orthogonal matrix M that diagonalizes A as fol-
lows:

D= diag(λ1, λ2)=MTAM,

z=MT t. (A4)

These quantities can be found from Eq. (A2) as



Research Article Vol. 36, No. 11 / November 2019 / Journal of the Optical Society of America B 3207

Fig. 3. Integration ranges of I (χ3, χ1) in the transformed coordi-
nate (z1, z3)= (t1 + t3, t1 − t3)/

√
2 indicated by dotted arrows.

M= 1
√

2

(
1 1
1 −1

)
,

D=
(
λ1 0
0 λ3

)
=

(
�2
+ H 0
0 �2

− H

)
,

z=
(

z1

z3

)
=

1
√

2

(
t1 + t3
t1 − t3

)
.

(A5)

Then, I (χ3, χ1)becomes

I (χ3, χ1)=

∫
∞

0
dt3

∫
∞

0
dt1e iχ1t1+iχ3t3 e−zT Dz/2

=

∫
∞

0
dz1

∫ z1

−z1

dz3e i[(χ1+χ3)z1+(χ1−χ3)z3/
√

2]e−λ1z2
1/2−λ3z2

3/2

=

∫
∞

0
dz1e i(χ1+χ3)z1/

√
2e−λ1z2

1/2

×

∫ z1

−z1

dz3e i(χ1−χ3)z3/
√

2e−λ3z2
3/2

= 2
∫
∞

0
dz1e i(χ1+χ3)z1/

√
2e−λ1z2

1/2

×

∫ z1

0
dz3 cos

[
(χ1 − χ3)z3/

√
2
]

e−λ3z2
3/2,

(A6)

where the change of integration limits in the second step can be
understood from Fig. 3.
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