396 research outputs found

    A revised averaging method and general forms of approximate solution for nonlinear oscillator with only polynomial-type displacement nonlinearity

    Get PDF
    In this paper a revised averaging method is presented, that does not need the detuning factor in the solving procedure. Comparison with the traditional averaging method shows that it has the similar solving procedure and the same result as the primary resonance of the traditional averaging method. Then the nonlinear oscillator with only polynomial-type displacement nonlinearity is studied, and the general forms of the first-order approximate solution by this revised averaging method, and by the traditional averaging method for the super-harmonic resonance and sub-harmonic resonance are established. At last, the Duffing oscillator is investigated as an example, and the comparison of the analytical and numerical results proves the validity and simplicity of the presented method

    Effect of fractional-order PID controller with acceleration feedback on a linear single degree-of-freedom oscillator

    Get PDF
    A linear single degree-of-freedom (SDOF) oscillator with fractional-order PID controller of acceleration feedback is investigated by the averaging method, and the approximately analytical solution is obtained. Moreover, the numerical solution of the system is obtained by the step-down order method and the power series method progressively. The effects of the parameters in fractional-order PID controller on the dynamical properties are characterized by some new equivalent parameters. The proportional component of fractional-order PID controller is characterized in the form of equivalent mass. The integral component of fractional-order PID controller is denoted in the form of the equivalent linear damping and equivalent mass. The differential component of fractional-order PID controller is denoted in the form of the equivalent linear negative damping and equivalent mass. Those equivalent parameters could distinctly illustrate the effects of the parameters in fractional PID controller on the dynamical response. A comparison between the analytical solution with the numerical results is made, and their satisfactory agreement verifies the correctness of the approximately analytical results. The effects of the parameters in fractional-order PID controller on control performance are further analyzed by some performance parameters of the time response. Finally, the robustness of the fractional-order PID controller based on acceleration feedback is demonstrated through the control of a SDOF quarter vehicle suspension model

    The Radio Properties of Radio-Loud Narrow-Line Seyfert 1 Galaxies on Parsec Scales

    Full text link
    We present the detection of compact radio structures of fourteen radio-loud narrow line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array observations at 5 GHz, which were performed in 2013. While 50\% of the sources of our sample show a compact core only, the remaining 50\% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 108.410^{8.4} to 1011.410^{11.4} K with a median value of 1010.110^{10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, then implying a lower jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all these sources are very radio-loud with R>100R > 100, their jet properties are diverse, in terms of their milli-arcsecond (mas) scale (pc scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario, where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford-Znajek mechanism.Comment: 39 pages, 17 figures, ApJS accepte

    Dynamical analysis of fractional-order Mathieu equation

    Get PDF
    The dynamical characteristics of Mathieu equation with fractional-order derivative is analytically studied by the Lindstedt-Poincare method and the multiple-scale method. The stability boundaries and the corresponding periodic solutions on these boundaries for the constant stiffness δ0=n2 (n = 0, 1, 2, …), are analytically obtained. The effects of the fractional-order parameters on the stability boundaries and the corresponding periodic solutions, including the fractional coefficient and the fractional order, are characterized by the equivalent linear damping coefficient (ELDC) and the equivalent linear stiffness coefficient (ELSC). The comparisons between the transition curves on the boundaries obtained by the approximate analytical solution and the numerical method verify the correctness and satisfactory precision of the analytical solution. The following analysis is focused on the effects of the fractional parameters on the stability boundaries located in the δ-ε plane. It is found that the increase of the fractional order p could make the ELDC larger and ELSC smaller, which could result into the rightwards and upwards moving of the stability boundaries simultaneously. It could also be concluded the increase of the fractional coefficient K1 would make the ELDC and ELSC larger, which could move the transition curves to the left and upwards at the same time. These results are very helpful to design, analyze or control this kind of system, and could present beneficial reference to the similar fractional-order system

    Structural and spectral properties of Galactic plane variable radio sources

    Get PDF
    In the time domain, the radio sky in particular along the Galactic plane direction may vary significantly because of various energetic activities associated with stars, stellar, and supermassive black holes. Multi-epoch Very Large Array surveys of the Galactic plane at 5.0 GHz enabled the finding of a catalogue of 39 variable radio sources in the flux density range 1-70 mJy. To probe their radio structures and spectra, we observed 17 sources with the very-long-baseline interferometric (VLBI) imaging technique and collected additional multifrequency data from the literature. We detected all of the sources at 5 GHz with the Westerbork Synthesis Radio Telescope, but only G23.6644-0.0372 with the European VLBI Network (EVN). Together with its decadal variability and multifrequency radio spectrum, we interpret it as an extragalactic peaked-spectrum source with a size of less than or similar to 10 pc. The remaining sources were resolved out by the long baselines of the EVN because of either strong scatter broadening at the Galactic latitude < 1 degrees or intrinsically very extended structures on centi-arcsec scales. According to their spectral and structural properties, we find that the sample has a diverse nature. We notice two young H ii regions and spot a radio star and a candidate planetary nebula. The rest of the sources are very likely associated with radio active galactic nuclei (AGNs). Two of them also display arcsec-scale faint jet activity. The sample study indicates that AGNs are common place even among variable radio sources in the Galactic plane

    Effect of fractional-order PID controller with acceleration feedback on a linear single degree-of-freedom oscillator

    Get PDF
    A linear single degree-of-freedom (SDOF) oscillator with fractional-order PID controller of acceleration feedback is investigated by the averaging method, and the approximately analytical solution is obtained. Moreover, the numerical solution of the system is obtained by the step-down order method and the power series method progressively. The effects of the parameters in fractional-order PID controller on the dynamical properties are characterized by some new equivalent parameters. The proportional component of fractional-order PID controller is characterized in the form of equivalent mass. The integral component of fractional-order PID controller is denoted in the form of the equivalent linear damping and equivalent mass. The differential component of fractional-order PID controller is denoted in the form of the equivalent linear negative damping and equivalent mass. Those equivalent parameters could distinctly illustrate the effects of the parameters in fractional PID controller on the dynamical response. A comparison between the analytical solution with the numerical results is made, and their satisfactory agreement verifies the correctness of the approximately analytical results. The effects of the parameters in fractional-order PID controller on control performance are further analyzed by some performance parameters of the time response. Finally, the robustness of the fractional-order PID controller based on acceleration feedback is demonstrated through the control of a SDOF quarter vehicle suspension model

    Effect of fractional-order PID controller with acceleration feedback on a linear single degree-of-freedom oscillator

    Get PDF
    A linear single degree-of-freedom (SDOF) oscillator with fractional-order PID controller of acceleration feedback is investigated by the averaging method, and the approximately analytical solution is obtained. Moreover, the numerical solution of the system is obtained by the step-down order method and the power series method progressively. The effects of the parameters in fractional-order PID controller on the dynamical properties are characterized by some new equivalent parameters. The proportional component of fractional-order PID controller is characterized in the form of equivalent mass. The integral component of fractional-order PID controller is denoted in the form of the equivalent linear damping and equivalent mass. The differential component of fractional-order PID controller is denoted in the form of the equivalent linear negative damping and equivalent mass. Those equivalent parameters could distinctly illustrate the effects of the parameters in fractional PID controller on the dynamical response. A comparison between the analytical solution with the numerical results is made, and their satisfactory agreement verifies the correctness of the approximately analytical results. The effects of the parameters in fractional-order PID controller on control performance are further analyzed by some performance parameters of the time response. Finally, the robustness of the fractional-order PID controller based on acceleration feedback is demonstrated through the control of a SDOF quarter vehicle suspension model
    • …
    corecore