52 research outputs found

    Transcriptome analysis of oil palm inflorescences revealed candidate genes for an auxin signaling pathway involved in parthenocarpy

    Get PDF
    Oil palm parthenocarpic fruits, which are produced without fertilization, can be targeted to increase oil content because the majority of the fruit is occupied by mesocarp, the part in which palm oil is stored. Consequently, gaining an understanding of the parthenocarpic mechanism would be instrumental for producing parthenocarpic oil palm. This study aims to determine effects of auxin treatment and analyze differentially expressed genes in oil palm pistils at the pollination/anthesis stage, using an RNA sequencing (RNA seq) approach. The auxin treatment caused 100% parthenocarpy when auxin was sprayed before stigmas opened. The parthenocarpy decreased to 55%, 8% and 5% when the auxin was sprayed 1, 2 and 3 days after the opening of stigmas, respectively. Oil palm plants used for RNA seq were plants untreated with auxin as controls and auxin-treated plants on the day before pollination and 1 day after pollination. The number of raw reads ranged from 8,425,859 to 11,811,166 reads, with an average size ranging from 99 to 137 base pairs (bp). When compared with the oil palm transcriptome, the mapped reads ranged from 8,179,948 to 11,320,799 reads, representing 95.85–98.01% of the oil palm matching. Based on five comparisons between RNA seq of treatments and controls, and confirmation using reverse transcription polymerase chain reaction and quantitative real-time RT-PCR expression, five candidate genes, including probable indole-3-acetic acid (IAA)-amido synthetase GH3.8 (EgGH3.8), IAA-amido synthetase GH3.1 (EgGH3.1), IAA induced ARG7 like (EgARG7), tryptophan amino transferase-related protein 3-like (EgTAA3) and flavin-containing monooxygenase 1 (EgFMO1), were differentially expressed between auxin-treated and untreated samples. This evidence suggests a pathway of parthenocarpic fruit development at the beginning of fruit development. However, more research is needed to identify which genes are definitely involved in parthenocarpy

    The Study and development of certain microorganisms with high capability in nanosilver particle biosynthesis

    Get PDF
    āļĢāļēāļĒāļ‡āļēāļ™āļāļēāļĢāļ§āļīāļˆāļąāļĒ -- āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļĢāļēāļŠāļĄāļ‡āļ„āļĨāļžāļĢāļ°āļ™āļ„āļĢ, 2556This research report is manipulated that summarized the moment of research project in the subject of “The Study and Development of Certain Microorganisms with High Capability in Nanosilver Particle Biosynthesis”. This project had been take time in 12 mounts. We focused on the isolation of microorganism that from manufacturing process and forming in gems and jewelry industry. Results showed that the initial silver refinery microorganism performed only in terms of Pseudomonas genus especially in AgNO3 solution. In contrast, Bacillus genus was not clearly effective silver refinery. These results could be the basis information for establish and develop system for silver refinery and/or silver quality improvement with biological process especially microorganisms in future.Rajamangala University of Technology Phra Nakho

    Novel Solvent–Latex Mixing: Thermal Insulation Performance of Silica Aerogel/Natural Rubber Composite

    No full text
    In this work, the novel natural rubber latex (NRL) mixing was approached. The mixing process was carried out by using n-hexane as the dispersed phase of silica aerogel which acted as thermal insulation filler prior to NRL mixing. The silica aerogel/NR composites were prepared with different silica aerogel contents of 20, 40, 60, 80, and 100 parts per hundred rubber (phr). The morphology of the 40 phr composite showed the NR macropore formation with silica aerogel intercalated layers. The optimal content of silica aerogels and n-hexane were the key to obtaining the NR macropore. The thermal insulation performance of silica aerogel/NR composites was investigated because of their porous structures. The thermal conductivity of the composites were lower than that of the neat NR sheet and decreased from 0.081 to 0.055 W m−1·K−1 with increasing silica aerogel content. The lower densities of the composites than that of the NR sheet were revealed noticeably. In addition, the silica aerogel/NR composites exhibited a higher heat retardant ability than that of the NR sheet, and the comparable glass transition temperatures (Tg) of the composites and the neat NR indicated the maintained flexibility at ambient temperature or higher, which can benefit various temperature applications. The overall results demonstrated that the silica aerogel/NR composites from the novel NRL mixing preparation could be a promising technique to develop the porous materials and be utilised as thermal insulation products and building constructions

    <b>Physicochemical properties of nanoparticles titania from alcohol burner calcination</b>

    Get PDF
    The physicochemical properties of synthesized TiO<sub>2</sub> nanoparticles from integrating sol-gel with flame-based techniques were studied. The synthesized nanoparticles properties were compared after using methanol, ethanol, and propanol fuel sources. The synthesized TiO<sub>2</sub> were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal analysis (thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC), and surface area Brunauer–Emmett–Teller (BET) method. The photocatalytic activity of TiO<sub>2</sub> nanoparticles was investigated by measuring the degradation of methylene blue. It was found that methanol and ethanol burners can be used as an alternative furnace that can yield TiO<sub>2</sub> nanoparticles with physicochemical properties comparable to that of commercial TiO<sub>2</sub> nanoparticles, while a propanol burner cannot be used as an alternative fuel
    • â€Ķ
    corecore