45 research outputs found

    Solar photocatalytic degradation of parabens using UiO-66-NH2

    Full text link
    The photocatalytic degradation of methylparaben was investigated under simulated solar light using a synthesised metal–organic framework (UiO-66-NH2). For that purpose, the pollutant was spiked in different water matrices: distilled water, water from Lima River (Northwestern Portugal), and urban wastewater. Complete removal of the methylparaben in distilled water was achieved in 1 h reaction. In natural water matrices, the photocatalytic performance decreased to 70% removal after 3 h reaction, owing to the physical–chemical properties of the water samples. The UiO-66-NH2 photocatalyst revealed high stability under the continuous mode, reaching a steady state in 5 h, from which the removal percentage was kept constant for 25 h. The photocatalytic degradation of methylparaben gave five main reaction byproducts and four short-chain carboxylic acids, identified by LC/ESI-MS and UHPLC analyses, respectively. The mechanism of degradation was investigated by using selective scavengers. Photogenerated holes and superoxide radicals were found as the main species responsible for the degradation of methylparaben. The abatement of other parabens (as ethyl- and propylparaben) was also evaluated, being the conversion influenced by the length of the alkyl side chain. The results of this study give a comprehensive sight into the effective photocatalytic remediation of parabens using UiO-66-NH2Authors acknowledge Spanish State Research Agency (PID2019- 106186RBI00/AEI/10.13039/501100011033). M. Peñas-Garzón is indebted to Spanish MECD (FPU16/00576 grant) and MICIU (EST19/ 00068). M.J.S. thanks to Project POCI-01-0145-FEDER-030674 (MicroPhotOGen, PTDC/NAN-MAT/30674/2017) funded by ERDF through COMPETE2020 - Programa Operacional Competitividade e Internacionalizaçao (POCI) – and by national funds through FCT - Fundaçao para a Ciência e a Tecnologia. We would like to thank the scientific collaboration financially supported by: Base-UIDB/50020/ 2020 and Programmatic-UIDP/50020/2020 Funding of Associate Laboratory LSRE-LCM - funded by national funds through FCT/MCTES (PIDDAC). Authors thank the Research Support Services of the Universidad Autónoma de Madrid (SIdI), University of Extremadura (SAIUEx), University of Málaga (SCAI) and Universidad Complutense of Madrid (CAI

    Magnetically treated water on phytochemical compounds of Rosmarinus officinalis L.

    Full text link
    Irrigation using water treated with static magnetic field (SMF) has recently been used as a strategy to stimulate the growth and development of different plant species. The aim of this study was to characterize the bioactive compounds and evaluate the anatomical structure of Rosmarinus officinalis L. irrigated with SMF-treated water. Results demonstrate that the treatment promoted plant growth, the number of trichomes and increased concentrations of secondary metabolites. Methanol-extracted leaves revealed that rosmarinic acid was detected in both experimental groups, without a difference in the level. Camphor, α-terpineol and verbenone were determined as the most abundant compounds present in these leaf extracts and were strongly increased in plants irrigated with SMF-treated water. Similar results were also observed for endo-borneol, bornyl acetate and β-amyrin concentrations.Taken together, these results indicate that irrigation with SMF-treated water can be used to improve the production of rosemary to obtain pharmaceutical products with an increased antioxidative activity

    Knowledge, Attitudes and Practices (KAP) related to the Pandemic (H1N1) 2009 among Chinese General Population: a Telephone Survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>China is at greatest risk of the Pandemic (H1N1) 2009 due to its huge population and high residential density. The unclear comprehension and negative attitudes towards the emerging infectious disease among general population may lead to unnecessary worry and even panic. The objective of this study was to investigate the Chinese public response to H1N1 pandemic and provide baseline data to develop public education campaigns in response to future outbreaks.</p> <p>Methods</p> <p>A close-ended questionnaire developed by the Chinese Center for Disease Control and Prevention was applied to assess the knowledge, attitudes and practices (KAP) of pandemic (H1N1) 2009 among 10,669 responders recruited from seven urban and two rural areas of China sampled by using the probability proportional to size (PPS) method.</p> <p>Results</p> <p>30.0% respondents were not clear whether food spread H1N1 virusand. 65.7% reported that the pandemic had no impact on their life. The immunization rates of the seasonal flu and H1N1vaccine were 7.5% and 10.8%, respectively. Farmers and those with lower education level were less likely to know the main transmission route (cough or talk face to face). Female and those with college and above education had higher perception of risk and more compliance with preventive behaviors. Relationships between knowledge and risk perception (OR = 1.69; 95%CI 1.54-1.86), and knowledge and practices (OR = 1.57; 95%CI 1.42-1.73) were found among the study subjects. With regard to the behavior of taking up A/H1N1 vaccination, there are several related factors found in the current study population, including the perception of life disturbed (OR = 1.29; 95%CI 1.11-1.50), the safety of A/H1N1 vaccine (OR = 0.07; 95%CI 0.04-0.11), the knowledge of free vaccination policy (OR = 7.20; 95%CI 5.91-8.78), the state's priority vaccination strategy(OR = 1.33; 95%CI 1.08-1.64), and taking up seasonal influenza vaccine behavior (OR = 4.69; 95%CI 3.53-6.23).</p> <p>Conclusions</p> <p>This A/H1N1 epidemic has not caused public panic yet, but the knowledge of A/H1N1 in residents is not optimistic. Public education campaign may take the side effects of vaccine and the knowledge about the state's vaccination strategy into account.</p

    Temporal and spatial analysis of Neural tube defects and detection of geographical factors in Shanxi Province, China

    Get PDF
    Background: Neural tube defects (NTDs) are congenital birth defects that occur in the central nervous system, and they have the highest incidence among all birth defects. Shanxi Province in China has the world's highest rate of NTDs. Since the 1990s, China's government has worked on many birth defect prevention programs to reduce the occurrence of NTDs, such as pregnancy planning, health education, genetic counseling, antenatal ultrasonography and serological screening. However, the rate of NTDs in Shanxi Province is still higher than the world's average morbidity rate after intervention. In addition, Shanxi Province has abundant coal reserves, and is the largest coal production province in China. The objectives of this study are to determine the temporal and spatial variation of the NTD rate in rural areas of Shanxi Province, China, and identify geographical environmental factors that were associated with NTDs in the risk area. Methods: In this study, Heshun County and Yuanping County in Shanxi Province, which have high incidence of NTDs, were selected as the study areas. Two paired sample T test was used to analyze the changes in the risk of NTDs from the time dimension. Ripley's k function and spatial filtering were combined with geographic information system (GIS) software to study the changes in the risk of NTDs from the spatial dimension. In addition, geographical detectors were used to identify the risk geographical environmental factors of NTDs in the study areas, especially the areas close to the coal sites and main roads. Results: In both Heshun County and Yuanping County, the incidence of NTDs was significantly (P&lt;0.05) reduced after intervention. The results from spatial analysis showed that significant spatial heterogeneity existed in both counties. NTD clusters were still identified in areas close to coal sites and main roads after interventions. This study also revealed that the elevation, fault and soil types always had a larger influence on the incidence of NTDs in our study areas. In addition, distance to the river was a risk factor of NTDs in areas close to the coal sites and main roads. Conclusion: The existing interventions may have played an important role to reduce the incidence of NTDs. However, there is still spatial heterogeneity in both counties after using the traditional intervention methods. The government needs to take more measures to strengthen the environmental restoration to prevent the occurrence of NTDs, especially those areas close to coal sites and main roads. The outcome of this research provides an important theoretical basis and technical support for the government to prevent the occurrence of NTDs

    Spatial distribution estimation of malaria in northern China and its scenarios in 2020, 2030, 2040 and 2050

    Get PDF
    © 2016 The Author(s). Background: Malaria is one of the most severe parasitic diseases in the world. Spatial distribution estimation of malaria and its future scenarios are important issues for malaria control and elimination. Furthermore, sophisticated nonlinear relationships for prediction between malaria incidence and potential variables have not been well constructed in previous research. This study aims to estimate these nonlinear relationships and predict future malaria scenarios in northern China. Methods: Nonlinear relationships between malaria incidence and predictor variables were constructed using a genetic programming (GP) method, to predict the spatial distributions of malaria under climate change scenarios. For this, the examples of monthly average malaria incidence were used in each county of northern China from 2004 to 2010. Among the five variables at county level, precipitation rate and temperature are used for projections, while elevation, water density index, and gross domestic product are held at their present-day values. Results: Average malaria incidence was 0.107 per annum in northern China, with incidence characteristics in significant spatial clustering. A GP-based model fit the relationships with average relative error (ARE) = 8.127 % for training data (R2 = 0.825) and 17.102 % for test data (R2 = 0.532). The fitness of GP results are significantly improved compared with those by generalized additive models (GAM) and linear regressions. With the future precipitation rate and temperature conditions in Special Report on Emission Scenarios (SRES) family B1, A1B and A2 scenarios, spatial distributions and changes in malaria incidences in 2020, 2030, 2040 and 2050 were predicted and mapped. Conclusions: The GP method increases the precision of predicting the spatial distribution of malaria incidence. With the assumption of varied precipitation rate and temperature, and other variables controlled, the relationships between incidence and the varied variables appear sophisticated nonlinearity and spatially differentiation. Using the future fluctuated precipitation and the increased temperature, median malaria incidence in 2020, 2030, 2040 and 2050 would significantly increase that it might increase 19 to 29 % in 2020, but currently China is in the malaria elimination phase, indicating that the effective strategies and actions had been taken. While the mean incidences will not increase even reduce due to the incidence reduction in high-risk regions but the simultaneous expansion of the high-risk areas
    corecore