294 research outputs found

    The Real-Time and Embedded Soccer Robot Control System

    Get PDF
    Non

    Topological Transformation and Free-Space Transport of Photonic Hopfions

    Get PDF
    Structured light fields embody strong spatial variations of polarisation, phase and amplitude. Understanding, characterization and exploitation of such fields can be achieved through their topological properties. Three-dimensional (3D) topological solitons, such as hopfions, are 3D localized continuous field configurations with nontrivial particle-like structures, that exhibit a host of important topologically protected properties. Here, we propose and demonstrate photonic counterparts of hopfions with exact characteristics of Hopf fibration, Hopf index, and Hopf mapping from real-space vector beams to homotopic hyperspheres representing polarisation states. We experimentally generate photonic hopfions with on-demand high-order Hopf indices and independently controlled topological textures, including N\'eel-, Bloch-, and anti-skyrmionic types. We also demonstrate a robust free-space transport of photonic hopfions, thus, showing potential of hopfions for developing optical topological informatics and communications

    A Coarse-to-fine Framework for Automated Kidney and Kidney Tumor Segmentation from Volumetric CT Images

    Get PDF
    Automatic semantic segmentation of kidney and kidney tumor is a promising tool for the treatment of kidney cancer. Due to the wide variety in kidney and kidney tumor morphology, it is still a great challenge to complete accurate segmentation of kidney and kidney tumor. We propose a new framework based on our previous work accepted by MICCAI2019, which is a coarse-to-fine segmentation framework to realize accurate and fast segmentation of kidney and kidney tumor

    The inner nuclear membrane protein NEMP1 supports nuclear envelope openings and enucleation of erythroblasts

    Get PDF
    Nuclear envelope membrane proteins (NEMPs) are a conserved family of nuclear envelope (NE) proteins that reside within the inner nuclear membrane (INM). Even though Nemp1 knockout (KO) mice are overtly normal, they display a pronounced splenomegaly. This phenotype and recent reports describing a requirement for NE openings during erythroblasts terminal maturation led us to examine a potential role for Nemp1 in erythropoiesis. Here, we report that Nemp1 KO mice show peripheral blood defects, anemia in neonates, ineffective erythropoiesis, splenomegaly, and stress erythropoiesis. The erythroid lineage of Nemp1 KO mice is overrepresented until the pronounced apoptosis of polychromatophilic erythroblasts. We show that NEMP1 localizes to the NE of erythroblasts and their progenitors. Mechanistically, we discovered that NEMP1 accumulates into aggregates that localize near or at the edge of NE openings and Nemp1 deficiency leads to a marked decrease of both NE openings and ensuing enucleation. Together, our results for the first time demonstrate that NEMP1 is essential for NE openings and erythropoietic maturation in vivo and provide the first mouse model of defective erythropoiesis directly linked to the loss of an INM protein

    Pathogenesis and treatment of chronic rhinosinusitis from the perspective of sinonasal epithelial dysfunction

    Get PDF
    BackgroundChronic rhinosinusitis (CRS) is a clinical syndrome primarily characterized by long-term mucosal inflammation of the nasal cavity and sinuses. The pathogenesis of CRS is still unclear due to its high heterogeneity. A number of studies have recently focused on the sinonasal epithelium. Thus, there has been a quantum leap in awareness of the role of the sinonasal epithelium, which is now understood as an active functional organ rather than simply an inert mechanical barrier. Undoubtedly, epithelial dysfunction plays a vital role in the onset and development of CRS.ObjectiveIn this article, we discuss the potential contribution of sinonasal epithelium dysfunction to CRS pathogenesis and explore a few current and developing therapeutic options targeting the sinonasal epithelium.ResultsImpaired mucociliary clearance (MCC) and an abnormal sinonasal epithelial barrier are usually considered to be the main causative factors in CRS. Epithelial-derived bioactive substances, such as cytokines, exosomes, and complements, play a vital role in the regulation of innate and adaptive immunity and contribute to the pathophysiological alterations of CRS. The phenomena of epithelial–mesenchymal transition (EMT), mucosal remodeling, and autophagy observed in CRS offer some novel insights into the pathogenesis of this disease. In addition, existing treatment options targeting disorder of sinonasal epithelium can help to relieve the main symptoms associated with CRS to some extent.ConclusionThe presence of a normal epithelium is fundamental for maintaining homeostasis in the nasal and paranasal sinuses. Here, we describe various aspects of the sinonasal epithelium and highlight the contributions of epithelial dysfunction to CRS pathogenesis. Our review provides sound evidence of the need for in-depth study of the pathophysiological alterations of this disease and for the development of novel epithelium-targeting alternative treatments

    Computationally Efficient Approximations Using Adaptive Weighting Coefficients for Solving Structural Optimization Problems

    Get PDF
    With rapid development of advanced manufacturing technologies and high demands for innovative lightweight constructions to mitigate the environmental and economic impacts, design optimization has attracted increasing attention in many engineering subjects, such as civil, structural, aerospace, automotive, and energy engineering. For nonconvex nonlinear constrained optimization problems with continuous variables, evaluations of the fitness and constraint functions by means of finite element simulations can be extremely expensive. To address this problem by algorithms with sufficient accuracy as well as less computational cost, an extended multipoint approximation method (EMAM) and an adaptive weighting-coefficient strategy are proposed to efficiently seek the optimum by the integration of metamodels with sequential quadratic programming (SQP). The developed EMAM stems from the principle of the polynomial approximation and assimilates the advantages of Taylor’s expansion for improving the suboptimal continuous solution. Results demonstrate the superiority of the proposed EMAM over other evolutionary algorithms (e.g., particle swarm optimization technique, firefly algorithm, genetic algorithm, metaheuristic methods, and other metamodeling techniques) in terms of the computational efficiency and accuracy by four well-established engineering problems. The developed EMAM reduces the number of simulations during the design phase and provides wealth of information for designers to effectively tailor the parameters for optimal solutions with computational efficiency in the simulation-based engineering optimization problems
    • …
    corecore