198 research outputs found

    Floral induction and flower formation : the role and potential applications of miRNAs

    Get PDF
    The multiple regulatory pathways controlling flowering and flower development are varied and complex, and they require tight control of gene expression and protein levels. MicroRNAs (miRNAs) act at both the transcriptional and post-transcriptional level to regulate key genes involved in flowering-related processes such as the juvenile–adult transition, the induction of floral competence and flower development. Many different miRNA families are involved in these processes and their roles are summarized in this review, along with potential biotechnological applications for miRNAs in controlling processes related to flowering and flower development

    Influence of viral genes on the cell-to-cell spread of RNA silencing

    Get PDF
    The turnip crinkle virus-based vector TCV–GFPDCP had been devised previously to study cell-to-cell and long-distance spread of virus-induced RNA silencing. TCV–GFPDCP, which had been constructed by replacing the coat protein (CP) gene with a green fluorescent protein (GFP) coding sequence, was able to induce RNA silencing in single epidermal cells, from which RNA silencing spread from cell-to-cell. Using this unique local silencing assay together with mutagenesis analysis, two TCV genes, p8 and p9, which were involved in the intercellular spread of virus-induced RNA silencing, were identified. TCV–GFPDCP and its p8- or p9-mutated derivatives, TCVmp8–GFPDCP and TCVmp9–GFPDCP, replicated efficiently but were restricted to single Nicotiana benthamiana epidermal cells. TCV–GFPDCP, TCVmp8–GFPDCP, or TCVmp9–GFPDCP was able to initiate RNA silencing that targeted and degraded recombinant viral RNAs in inoculated leaves of the GFP-expressing N. benthamiana line 16c. However, cell-to-cell spread of silencing to form silencing foci was triggered only by TCV–GFPDCP. Non-replicating TCVmp88–GFPDCP and TCVmp28mp88–GFPDCP with dysfunctional replicase genes, and single-stranded gfp RNA did not induce RNA silencing. Transient expression of the TCV p9 protein could effectively complement TCVmp9–GFPDCP to facilitate intercellular spread of silencing. These data suggest that the plant cellular trafficking machinery could hijack functional viral proteins to permit cell-to-cell movement of RNA silencing

    Systemic movement of FT mRNA and a possible role in floral induction

    Get PDF
    FLOWERING LOCUS T (FT) protein is known to be part of the mobile flowering inducing “florigen” signal in plants, but it may not be acting alone. This article reviews the data that FT mRNA can also move systemically throughout the plant and into the shoot apical meristem (SAM) independently of the FT protein. There is a promotion of flowering when increased levels of virally expressed FT mRNA are present together with endogenously produced FT protein in inducing conditions, even if the additional FT mRNA is non-translatable and thus not increasing the overall levels of FT protein. A specific sequence, or “zip code” of the FT mRNA is required for systemic movement and this sequence binds a specific protein(s) in plant extracts. This raises the possibility the FT mRNA may be moving systemically through the plant and into the SAM as an RNA–protein complex, whether FT protein is also a component of this mobile complex remains to be determined

    Vertical Stratification of Sediment Microbial Communities Along Geochemical Gradients of a Subterranean Estuary Located at the Gloucester Beach of Virginia, United States

    Get PDF
    Subterranean estuaries (STEs) have been recognized as important ecosystems for the exchange of materials between the land and sea, but the microbial players of biogeochemical processes have not been well examined. In this study, we investigated the bacterial and archaeal communities within 10 cm depth intervals of a permeable sediment core (100 cm in length) collected from a STE located at Gloucester Point (GP-STE), VA, United States. High throughput sequencing of 16S rRNA genes and subsequent bioinformatics analyses were conducted to examine the composition, diversity, and potential functions of the sediment communities. The community composition varied significantly from the surface to a depth of 100 cm with up to 13,000 operational taxonomic units (OTUs) based on 97% sequence identities. More than 95% of the sequences consisted of bacterial OTUs, while the relative abundances of archaea, dominated by Crenarchaea, gradually increased with sediment core depth. Along the redox gradients of GP-STE, differential distribution of ammonia-and methane-oxidizing, denitrifying, and sulfate reducing bacteria was observed as well as methanogenic archaea based on predicted microbial functions. The aerobic-anaerobic transition zone (AATZ) had the highest diversity and abundance of microorganisms, matching with the predicted functional diversity. This indicates the AATZ as a hotspot of biogeochemical processes of STEs. The physical and geochemical gradients in different depths have attributed to vertical stratification of microbial community composition and function in the GP-STE

    A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening

    Get PDF
    Ethylene is required for climacteric fruit ripening. Inhibition of ethylene biosynthesis genes, 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase, prevents or delays ripening, but it is not known how these genes are modulated during normal development. LeHB-1, a previously uncharacterized tomato homeobox protein, was shown by gel retardation assay to interact with the promoter of LeACO1, an ACC oxidase gene expressed during ripening. Inhibition of LeHB-1 mRNA accumulation in tomato fruit, using virus-induced gene silencing, greatly reduced LeACO1 mRNA levels, and inhibited ripening. Conversely, ectopic overexpression of LeHB-1 by viral delivery to developing flowers elsewhere on injected plants triggered altered floral organ morphology, including production of multiple flowers within one sepal whorl, fusion of sepals and petals, and conversion of sepals into carpel-like structures that grew into fruits and ripened. Our findings suggest that LeHB-1 is not only involved in the control of ripening but also plays a critical role in floral organogenesis

    FLC expression is down-regulated by cold treatment in Diplotaxis tenuifolia (wild rocket), but flowering time is unaffected

    Get PDF
    Wild rocket (Diplotaxis tenuifolia) has become a very popular salad leaf due to its peppery taste. It is part of the Brassicaceae family and thus has a high level of homology at the DNA level to other Brassica species including Arabidopsis thaliana. The vernalization and photoperiodic requirements of wild rocket have not been reported to date. Photoperiodic experiments described here demonstrate that rocket is a facultative long day plant. To investigate the vernalization requirement, both seed and young plants were given vernalization treatments at 4 °C for different lengths of time. A rocket homologue of FLOWERING LOCUS C (DtFLC) was isolated and shown to functionally complement the Arabidopsis FRI+flc3 null mutant. Whilst the expression of DtFLC was significantly reduced after just one week of cold treatment, cold treatments of two to eight weeks had no significant effect on bolting time of wild rocket indicating that rocket does not have a vernalization requirement. These findings illustrate that important fundamental differences can exist between model and crop plant species, such as in this case where down-regulation of DtFLC expression does not enable earlier flowering in wild rocket as it does in Arabidopsis and many other Brassica species

    Resonant enhancement of second harmonic generation in the mid-infrared using localized surface phonon polaritons in sub-diffractional nanostructures

    Full text link
    We report on strong enhancement of mid-infrared second harmonic generation (SHG) from SiC nanopillars due to the resonant excitation of localized surface phonon-polaritons within the Reststrahlen band. The magnitude of the SHG peak at the monopole mode experiences a strong dependence on the resonant frequency beyond that described by the field localization degree and the dispersion of linear and nonlinear-optical SiC properties. Comparing the results for the identical nanostructures made of 4H and 6H SiC polytypes, we demonstrate the interplay of localized surface phonon polaritons with zone-folded weak phonon modes of the anisotropic crystal. Tuning the monopole mode in and out of the region where the zone-folded phonon is excited in 6H-SiC, we observe a prominent increase of the already monopole-enhanced SHG output when the two modes are coupled. Envisioning this interplay as one of the showcase features of mid-infrared nonlinear nanophononics, we discuss its prospects for the effective engineering of nonlinear-optical materials with desired properties in the infrared spectral range.Comment: 16 pages, 3 figure

    Transcriptional and post-transcriptional regulation of RNAi-related gene expression during plant-virus interactions

    Get PDF
    As sessile organisms, plants encounter diverse invasions from pathogens including viruses. To survive and thrive, plants have evolved multilayered defense mechanisms to combat virus infection. RNAi, also known as RNA silencing, is an across-kingdom innate immunity and gene regulatory machinery. Molecular framework and crucial roles of RNAi in antiviral defense have been well-characterized. However, it is largely unknown that how RNAi is transcriptionally regulated to initiate, maintain and enhance cellular silencing under normal or stress conditions. Recently, insights into the transcriptional and post-transcriptional regulation of RNAi-related genes in different physiological processes have been emerging. In this review, we integrate these new findings to provide updated views on how plants modulate RNAi machinery at the (post-) transcriptional level to respond to virus infection

    Spatial Variability and Co-acclimation of Phytoplankton and Bacterioplankton Communities in the Pearl River Estuary, China

    Get PDF
    Phytoplankton and bacterioplankton play significant roles in estuarine systems. It is important to demonstrate the spatial variability of bacterial and microalgal communities and understand the co-acclimation of these organisms to different environmental factors. In this study, MiSeq sequencing and morphological identification were applied to analyze the variations in bacterial and microalgal communities in the Pearl River Estuary, respectively. Molecular ecological network analysis was used to investigate the potential interactions between microalgae and bacteria and illustrate the responses of these interactions to environmental gradients. The results revealed that microalgal/bacterial communities in freshwater samples were distinct from those in mesohaline water samples. Microalgae affiliated to the genus Skeletonema dominated the mesohaline water phytoplankton communities, while Melosira was the more abundant genus in freshwater communities. Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Acidimicrobiia dominated bacterial communities in freshwater samples, while Gammaproteobacteria, Bacilli, and Synechococcophycideae were more abundant in mesohaline water samples. Tightly correlations were observed between phytoplankton and bacterioplankton. These interactions were regarded to be key factors in shaping the community structures. Further, the KEGG database and PICRUSt were used to predict the functions of bacterioplankton in the process of nitrogen cycling. The results indicated that denitrification could play an important role in nitrogen loss and might alleviate the eutrophication in the Pearl River Estuary. Collectively, the results in this study revealed that substantial changes in phytoplankton and bacterioplankton communities were correlated with the gradients of environmental parameters in the Pearl River Estuary. The results also demonstrated that the interactions between phytoplankton and bacterioplankton were important for these organisms to acclimate to changing environments
    corecore