1,200 research outputs found
Nonparametric liquefaction triggering and postliquefaction deformations
This study evaluates granular liquefaction triggering case-history data using a nonparametric approach. This approach assumes no functional form in the relationship between liquefied and nonliquefied cases as measured using cone penetration test (CPT) data. From a statistical perspective, this allows for an estimate of the threshold of liquefaction triggering unbiased by prior functional forms, and also provides a platform for testing existing published methods for accuracy and precision. The resulting threshold exhibits some unique trends, which are then interpreted based on postliquefaction deformation behavior. The range of postliquefaction deformations are differentiated into three zones: (1) large deformations associated with metastable conditions; (2) medium deformations associated with cyclic strain failure; and (3) small deformations associated with cyclic stress failure. Deformations are further defined based on the absence or presence of static driving shear stresses. This work presents a single simplified framework that provides quantitative guidance on triggering and qualitative guidance on deformation potential for quick assessment of risks associated with seismic soil liquefaction failure
A comparative analysis of the mechanisms of ammonia synthesis on various catalysts using density functional theory
In this review, we present the recent progress in ammonia synthesis research using density functional theory (DFT) calculations on various industrial catalysts, metal nitrides and nano-cluster-supported catalysts. The mechanism of ammonia synthesis on the industrial Fe catalyst is generally accepted to be a dissociative mechanism. We have recently found, using DFT techniques, that on Co₃Mo₃N (111) surfaces, an associative mechanism in the synthesis of ammonia can offer a new low-energy pathway that was previously unknown. In particular, we have shown that metal nitrides that are also known to have high activity for ammonia synthesis can readily form nitrogen vacancies which can activate dinitrogen, thereby promoting the associative mechanism. These fundamental studies suggest that a promising route to the discovery of low-temperature ammonia synthesis catalysts will be to identify systems that proceed via the associative mechanism, which is closer to the nitrogen-fixation mechanism occurring in nitrogenases
Choice Hygiene for “Consumer Neuroscientists”? Ethical Considerations and Proposals for Future Endeavours
Is the use of psychological and neuroscientific methods for neuromarketing research always aligned with the principles of ethical research practice? Some neuromarketing endeavours have passed from informing consumers about available options, to helping to market as many products to consumers as possible. Needs are being engineered, using knowledge about the human brain to increase consumption further, regardless of individual, societal and environmental needs and capacities. In principle, the ground ethical principle of any scientist is to further individual, societal and environmental health and well-being with their work. If their findings can be used for the opposite, this must be part of the scientist’s considerations before engaging in such research and to make sure that the risks for misuse are minimised. Against this backdrop, we provide a series of real-life examples and a non-exhaustive literature review, to discuss in what way some practices in the neuromarketing domain may violate the Helsinki Declaration of Experimentation with Human Subjects. This declaration was set out to regulate biomedical research, but has since its inception been applied internationally also to behavioural and social research. We illustrate, point by point, how these ground ethical principles should be applied also to the neuromarketing domain. Indisputably, the growth in consumption is required due to current prevalent economical models. Thus, in the final part of the paper, we discuss how alternative models may be promotable to a larger public, aided by more ethical marketing endeavours, based on neuroscientific discoveries about the human brain. We propose this as a philosophical question, a point of discussion for the future, to make neuromarketing as a discipline, fit for the future, respecting the ethical implications of this research
SU(1,1) symmetry of multimode squeezed states
We show that a class of multimode optical transformations that employ linear
optics plus two-mode squeezing can be expressed as SU(1,1) operators. These
operations are relevant to state-of-the-art continuous variable quantum
information experiments including quantum state sharing, quantum teleportation,
and multipartite entangled states. Using this SU(1,1) description of these
transformations, we obtain a new basis for such transformations that lies in a
useful representation of this group and lies outside the often-used restriction
to Gaussian states. We analyze this basis, show its application to a class of
transformations, and discuss its extension to more general quantum optical
networks
Cerebritis and Neutropenia in A Child with ana Negative Lupus
ObjectiveSystemic lupus erythematosus (SLE), an autoimmune systemic disease with unknown etiology, affects virtually every part of the body; involvement of the central nervous system (CNS) is one of the major causes of morbidity and mortality in systemic lupus erythematosus (SLE) patients and is the least understood aspect of the disease. neutropenia is very uncommon in childhood lupus. True negative anti nuclear antibody (ANA) tests in patients with lupus are now very rare. The patient reported here was a 12-year-old girl with ANA negative lupus cerebritis who presented with left hemiparesia after a generalized seizure, with neutropenia observed during its course
Measurement of the penetration depth and coherence length of MgB2 in all directions using transmission electron microscopy
We demonstrate that images of flux vortices in a superconductor taken with a
transmission electron microscope can be used to measure the penetration depth
and coherence length in all directions at the same temperature and magnetic
field. This is particularly useful for MgB, where these quantities vary
with the applied magnetic field and values are difficult to obtain at low field
or in the -direction. We obtained images of flux vortices from an MgB
single crystal cut in the plane by focussed ion beam milling and tilted to
with respect to the electron beam about its axis. A new method
was developed to simulate these images which accounted for vortices with a
non-zero core in a thin, anisotropic superconductor and a simplex algorithm was
used to make a quantitative comparison between the images and simulations to
measure the penetration depths and coherence lengths. This gave penetration
depths nm and nm at 10.8 K in a
field of 4.8 mT. The large error in is a consequence of tilting
the sample about and had it been tilted about , the errors would be
reversed. Thus, obtaining the most precise values requires taking images of the
flux lattice with the sample tilted in more than one direction. In a previous
paper, we obtained a more precise value using a sample cut in the plane.
Using this value gives nm, nm,
nm and nm which agree well with
measurements made using other techniques. The experiment required two days to
conduct and does not require large-scale facilities. It was performed on a very
small sample: microns and 200 nm thick so this method could prove
useful for characterising new superconductors where only small single crystals
are available.This work was funded by the Royal Society. Work at
Eidgenossische Technische Hochschule, Zürich was supported
by the Swiss National Science Foundation and the National
Center of Competence in Research programme “Materials
with Novel Electronic Properties.”This is the accepted manuscript for a paper published in Physical Review B, 91, 054505, 5 February 2015, DOI: 10.1103/PhysRevB.91.05450
DFT-D3 study of H 2 and N 2 chemisorption over cobalt promoted Ta 3 N 5-(100), (010) and (001) surfaces
The reactants for ammonia synthesis have been studied, employing density functional theory (DFT), with respect to their adsorption on tantalum nitride surfaces. The adsorption of nitrogen was found to be mostly molecular and non-activated with side-on, end-on and tilt configurations. At bridging nitrogen sites (Ta–N–Ta) it results in an azide functional group formation with a formation energy of 205 kJ mol−1. H2 was found also to chemisorb molecularly with an adsorption energy in the range −81 to −91 kJ mol−1. At bridging nitrogen sites it adsorbs dissociatively forming >NH groups with an exothermic formation energy of −175 kJ mol−1 per H2. The nitrogen vacancy formation energies were relatively high compared to other metal nitrides found to be 2.89 eV, 2.32 eV and 1.95 eV for plain, surface co-adsorbed cobalt and sub-surface co-adsorbed cobalt Ta3N5-(010). Co-adsorption of cobalt was found to occur mostly at nitrogen rich sites of the surface with an adsorption energy that ranged between −200 to −400 kJ mol−1. The co-adsorption of cobalt was found to enhance the dissociation of molecular hydrogen on the surface of Ta3N5. The studies offer significant new insight with respect to the chemistry of N2 and H2 with tantalum nitride surfaces in the presence of cobalt promoters
DFT-D3 study of molecular N2 and H2 activation on Co3Mo3N surfaces
Cobalt molybdenum nitride (Co3Mo3N) is one of the most active catalysts for ammonia synthesis, although the atomistic details of the reaction mechanism are currently unknown. We present a dispersion-corrected (D3) DFT study of the adsorption and activation of molecular nitrogen and hydrogen on Co3Mo3N-(111) surfaces to identify possible activation sites for ammonia synthesis. H2 was found to adsorb both molecularly on the Mo3N framework and dissociatively on Co8 clusters or Mo3 clusters that were exposed due to N-vacancies. We find that there are two possible activation sites for N2 where both N2 and H2 can coadsorb. The first is a Mo3 triangular cluster that resides at 3f nitrogen vacancies, and the second is a surface cavity where N2 is activated by a Co8 cluster, the second being a more efficient activation site. N2 was found to adsorb in three adsorption configurations: side-on, end-on, and an unusual tilt end-on (155°) configuration, and the existence of these three adsorption configurations is explained via MP2 calculations and the sphere-in-contact model
The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping
A systematic study was carried out to investigate the potential of manganese nitride related materials for ammonia production. A-Mn-N (A = Fe, Co, K, Li) materials were synthesised by nitriding their oxide counterparts at low temperature using NaNH2 as a source of reactive nitrogen. The reactivity of lattice nitrogen was assessed using ammonia synthesis as a model reaction. In the case of Mn3N2, limited reactivity was observed and only 3.1% of the available lattice nitrogen was found to be reactive towards hydrogen to yield ammonia while most of the lattice nitrogen was lost as N2. However, the presence of a co-metal played a key role in shaping the nitrogen transfer properties of manganese nitride and impacted strongly upon its reactivity. In particular, doping manganese nitride with low levels of lithium resulted in enhanced reactivity at low temperature. In the case of the Li-Mn-N system, the fraction of ammonia formed at 400 °C corresponded to the reaction of 15% of the total available lattice nitrogen towards hydrogen. Li-Mn-N presented high thermochemical stability after reduction with hydrogen which limited the regeneration step using N2 from the gas phase. However, the results presented herein demonstrate the Li-Mn-N system to be worthy of further attention
- …