1,590 research outputs found

    Promoter methylation analysis of WNT/β-catenin pathway regulators and its association with expression of DNMT1 enzyme in colorectal cancer

    Get PDF
    Background: Aberrant DNA methylation as the most important reason making epigenetic silencing of genes is a main mechanism of gene inactivation in patients with colorectal cancer. In this study, we decided to identify promoter methylation status of ten genes encoding WNT negative regulators, and measure the expression of DNMT1 enzyme in colorectal cancer samples. Results: Aberrant methylation of APC gene was statistically significant associated with age over 50 (p = 0.017), DDK3 with male (p < 0.0001), SFRP4, WIF1, and WNT5a with increasing tumor stage (p = 0.004, p = 0.029, and p = 0.004), SFRP4 and WIF1 with tumor differentiation (p = 0.009 and p = 0.031) and SFRP2 and SFRP5 with histological type (p = 0.001 and p = 0.025). The increasing number of methylated genes correlated with the expression levels of the DNMT1 mRNA. Conclusions: The rate of gene promoter methylation of WNT pathway regulators is high in colorectal cancer cells. Hyper-methylation is associated with increased expression of the DNMT1 enzyme. © 2014 Mansour Samaei et al.; licensee BioMed Central

    Atom Transfer and Single-Adatom Contacts

    Full text link
    The point contact of a tunnel tip approaching towards Ag(111) and Cu(111) surfaces is investigated with a low temperature scanning tunneling microscope. A sharp jump-to-contact, random in nature, is observed in the conductance. After point contact, the tip-apex atom is transferred to the surface, indicating that a one-atom contact is formed during the approach. In sharp contrast, the conductance over single silver and copper adatoms exhibits a smooth and reproducible transition from tunneling to contact regime. Numerical simulations show that this is a consequence of the additional dipolar bonding between the homoepitaxial adatom and the surface atoms.Comment: 4 pages, 4 figure

    Failure of Scattering Interference in the Pseudogap State of Cuprate Superconductors

    Full text link
    We calculate scattering interference patterns for various electronic states proposed for the pseudogap regime of the cuprate superconductors. The scattering interference models all produce patterns whose wavelength changes as a function of energy, in contradiction to the energy-independent wavelength seen by scanning tunneling microscopy (STM) experiments in the pseudogap state. This suggests that the patterns seen in STM local density of states measurements are not due to scattering interference, but are rather the result of some form of ordering.Comment: To be submitted to Phys. Rev.

    Markov Chain Modelling-Based Approach to Reserve Electric Vehicles in Parking Lots for Distribution System Energy Management

    Get PDF
    Integration of renewable energy resources in distribution networks with intermittent behaviour increases the challenge of power balance in transmission systems. To mitigate the undesired impacts, transmission operator involves distribution operators to get local contribution from their flexible resources. In this paper, we address the flexibility offered by some electric car sharing agents which can serve some reserve capacity to distribution system. A Markov Chain modelling based approach is proposed to support system operator to properly estimate the number of electric vehicles required to be booked in advance as reserve. Underestimation would result in imperfect demand correction, and overestimation would imply extra costs. Using a realistic case under a near future scenario of high PV integration and EV accommodation, we demonstrate the contribution of our approach to this problem of planning or scheduling. Obtained results quantifies the performance of the proposed method in terms of average energy difference based on number of EVs. The results can be used as a basis to decide the appropriate number of EV reservations

    Cd3As2 is Centrosymmetric

    Full text link
    This is a revised version of a manuscript that was originally posted here in February of 2014. It has been accepted at the journal Inorganic Chemistry after reviews that included those of two crystallographers who made sure all the t's were crossed and the i's were dotted. The old work (from 1968) that said that Cd3As2 was noncentrosymmetric was mistaken, with the authors of that study making a type of error that in the 1980s became infamous in crystallography. As a result of the increased scrutiny of the issue of centrosymmetricity of the 1980's, there are now much better analysis tools to resolve the issue fully, and its important to understand that not just our crystals are centrosymmetric, even the old guy's crystals were centrosymmetric (and by implication everyone's are). There is no shame in having made that error back in the day and those authors would not find the current centrosymmetric result controversial; their paper is excellent in all other aspects. This manuscript describes how the structure is determined, explains the structure schematically, calculates the electronic structure based on the correct centrosymmetric crystal structure, and gives the structural details that should be used for future analysis and modeling.Comment: Accepted by ACS Inorganic Chemistr

    Adaptive control of sub-populations in evolutionary dynamic optimization

    Get PDF
    Multi-population methods are highly effective in solving dynamic optimization problems. Three factors affect this significantly: the exclusion mechanisms to avoid the convergence to the same peak by multiple sub-populations, the resource allocation mechanism which assigns the computational resources to the sub-populations, and the control mechanisms to adaptively adjust the number of sub-populations by considering the number of optima and available computational resources. In the existing exclusion mechanisms, when the distance (i.e. the distance between their best found positions) between two sub-populations becomes less than a predefined threshold, the inferior one will be removed/reinitialized. However, this leads to incapability of algorithms in covering peaks/optima that are closer than the threshold. Moreover, despite the importance of resource allocation due to the limited available computational resources between environmental changes, it has not been well studied in the literature. Finally, the number of sub-populations should be adapted to the number of optima. However, in most existing adaptive multi-population methods, there is no predefined upper bound for generating sub-populations. Consequently, in problems with large numbers of peaks, they can generate too many subpopulations sharing limited computational resources. In this paper, a multi-population framework is proposed to address the aforementioned issues by using three adaptive approaches: subpopulation generation, double-layer exclusion, and computational resource allocation. The experimental results demonstrate the superiority of the proposed framework over several peer approaches in solving various benchmark problems
    corecore