

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/143868

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/341795763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/143868
mailto:wrap@warwick.ac.uk

IEEE TRANSACTIONS ON CYBERNETICS 1

Adaptive Control of Sub-Populations in
Evolutionary Dynamic Optimization

Danial Yazdani, Member, IEEE, Ran Cheng, Member, IEEE,
Cheng He, Member, IEEE, and Jürgen Branke, Member, IEEE

Abstract—Multi-population methods are highly effective in
solving dynamic optimization problems. Three factors affect this
significantly: the exclusion mechanisms to avoid the convergence
to the same peak by multiple sub-populations, the resource
allocation mechanism which assigns the computational resources
to the sub-populations, and the control mechanisms to adaptively
adjust the number of sub-populations by considering the number
of optima and available computational resources. In the existing
exclusion mechanisms, when the distance (i.e. the distance be-
tween their best found positions) between two sub-populations
becomes less than a predefined threshold, the inferior one will
be removed/reinitialized. However, this leads to incapability
of algorithms in covering peaks/optima that are closer than
the threshold. Moreover, despite the importance of resource
allocation due to the limited available computational resources
between environmental changes, it has not been well studied in
the literature. Finally, the number of sub-populations should be
adapted to the number of optima. However, in most existing
adaptive multi-population methods, there is no predefined upper
bound for generating sub-populations. Consequently, in problems
with large numbers of peaks, they can generate too many sub-
populations sharing limited computational resources. In this
paper, a multi-population framework is proposed to address the
aforementioned issues by using three adaptive approaches: sub-
population generation, double-layer exclusion, and computational
resource allocation. The experimental results demonstrate the
superiority of the proposed framework over several peer ap-
proaches in solving various benchmark problems.

Index Terms—Dynamic optimization problems, Tracking mov-
ing optima, Multi-population, Computational resource allocation.

I. INTRODUCTION

SEARCH spaces of many real-world optimization problems
are dynamic and changing over time. These problems need

to be solved online by an optimization method and are referred
as dynamic optimization problems (DOPs) [1]. Several classes
of DOPs have been investigated in the literature, such as
combinatorial [2], [3], continuous [4], [5], multi-objective [6],
[7], and constrained DOPs [8], [9]. This paper focuses on
dynamic continuous unconstrained single-objective global op-
timization problems. For brevity, we use the term DOPs to
refer to the considered DOPs in this paper. For solving DOPs,

D. Yazdani, R. Cheng and C. He are with University Key Laboratory
of Evolving Intelligent Systems of Guangdong Province, Department of
Computer Science and Engineering, Southern University of Science and
Technology, Shenzhen 518055, China (e-mails: danial.yazdani@gmail.com,
ranchengcn@gmail.com, chenghehust@gmail.com).

J. Branke is with the Operational Research and Management Sciences
Group in Warwick Business school, University of Warwick, Coventry CV4
7AL, United Kingdom (email: Juergen.Branke@wbs.ac.uk).

Corresponding author: Ran Cheng.

optimization methods not only need to find the global optimum
but also track it after environmental changes [10]. DOPs are
usually represented as follows:

F (x) = f
(
x, θ(t)

)
, (1)

where f is the objective function, x is a solution in the
search space, θ(t) are environmental parameters that change
over time, t is the time index with t ∈ [0, t̂], and t̂ is the
number of environments of problem. In this paper, like most
previous studies in the DOP domain, we focus on DOPs
whose environmental changes happen discretely over time,
i.e., t ∈ {1, . . . , t̂} with static periods between environmental
changes. For a DOP with t̂ environmental states, there is a
sequence of t̂ stationary environments:

F (x) =
[
f(x, θ(1)), f(x, θ(2)), . . . , f(x, θ(t̂))

]
. (2)

The effectiveness of a DOP algorithm depends heavily on its
speed in responding to the environmental changes and finding
the new global optimum position. To this end, DOP algorithms
must address some specific challenges of DOPs:
• Global diversity loss: this issue arises due to the nature

of the evolutionary algorithms in converging to promising
areas. In such a circumstance, the exploration capability
of the algorithms will deteriorate significantly. Conse-
quently, the algorithms become incapable of locating the
new position of the global optimum when the relocation
severity is intense.

• Local diversity loss: when a sub-population has con-
verged to an optimum position (i.e. peak summit), its
individuals are close to each other. Consequently, after
an environmental change, when the optimum position has
shifted, the sub-population may be incapable of tracking
it. In such circumstances, the local diversity loss issue
happens, which results in deteriorating the tracking and
exploitation capabilities of the sub-population in the new
environments.

• Limited computational resources: between successive en-
vironmental changes, it can be time consuming to perform
over-exploitation or over-exploration without prioritizing
more promising regions of the search space.

One of the most suitable and commonly used approach
to tackle DOPs are multi-population methods [11], where
more than one population are used to cooperatively locate
and track multiple local optima simultaneously. By covering
multiple optima/peaks, multi-population DOP algorithms can
locate and track the global optimum more efficiently [11]. The

IEEE TRANSACTIONS ON CYBERNETICS 2

performance of the multi-population methods is highly depen-
dent on the sub-population control and computational resource
management. Different methods have been used to control
sub-populations such as fixed number of sub-populations [4],
regrouping methods [12], clustering based methods [13], and
methods with adaptive number of sub-populations [14]. In all
aforementioned methods, efficiencies of covering and perform-
ing mutual exclusion of peaks significantly affect the overall
performance of the multi-population approach.

Since the number of peaks/optima is unknown in real-world
applications or may change over time, the algorithms whose
number of sub-populations cannot adapt to the number of
peaks/optima are inefficient [15]. Adaptive multi-population
methods have ameliorated this challenge by adapting the num-
ber of sub-populations to the number of discovered peaks [4].
However, a major shortcoming of the most adaptive multi-
population methods is that there is no upper bound for the
number of sub-populations. Therefore, in problems with large
numbers of peaks, these methods may create a large number
of sub-populations. As a result, their performance deteriorates
due to the shortage of computational resources.

Another considerable issue with the multi-population meth-
ods is to establish mutual exclusion for each peak between
sub-populations. Residing more than one sub-population on
a peak deteriorates the performance by wasting computa-
tional resources. To address this issue, exclusion mechanism
was introduced in [4]. Using this method, if the Euclidean
distance between two sub-populations (i.e. the distance be-
tween their best found positions) becomes less then a thresh-
old, the sub-population with inferior best found position
will be removed/re-initialized. This mechanism with some
minor modifications has been used in many DOP algo-
rithms/frameworks [10], [11].

The performance of the exclusion mechanism is highly
dependent on the value of its threshold. On one hand, if the
exclusion threshold is set too low, it takes additional time
before two sub-populations on the same peak are detected.
As a result, a considerable amount of computational resource
is wasted. On the other hand, large exclusion radius makes
the algorithms incapable of covering peaks whose Euclidean
distance is less than the threshold. In addition, if two or more
peaks that are covered by tracker sub-populations become
closer than the threshold, the tracker(s) on the worse peak(s)
will be removed/reinitialized. Consequently, the coverage per-
formance deteriorates. This issue arises due to the lack of
considering type/role of the involved sub-populations. Further-
more, using Euclidean distance as the exclusion radius could
cause difficulties due to the nature of the Euclidean norm. In
fact, Euclidean norm considers all differences in dimensions
together. Therefore, higher differences in peak locations in
some dimensions can be dominated by lower distances in other
dimensions. Consequently, peaks/sub-populations that are far
away in some dimensions, but close in other dimensions, could
be involved in the mutual exclusion.

Another important consideration in DOPs is to manage
computational resources. This is vital due to the limited
available computational resources between successive envi-
ronmental changes. Despite the large body of literature on

DOPs, little attention has been given to computational resource
allocation between sub-populations. Indeed, most of the ex-
isting DOP algorithms simply used a Round Robin scheme
for running sub-populations in each iteration [1], [10], [11],
[16]. However, this method has some shortcomings which
are consequences of the uniform distribution of computational
resource among all sub-populations over time. Other existing
computational resource allocation methods can be categorized
into two groups of hibernating [15], [17]–[19] and progress
based [20]–[22] approaches. In the hibernating methods, the
Round Robin scheme is used but the sub-populations that have
converged/stagnated would be removed from the Round Robin
list. In the progress based methods, algorithms usually choose
the sub-population with the best progress and rank to be run
in the next iteration. Although these two resource allocation
methods improved the performance of the algorithms, they
have some shortcomings. On one hand, in the hibernating
methods, algorithms do not take the type, role or rank of
the sub-populations into the account. On the other hand,
progress based approaches do not consider the convergence
status or the type of the sub-populations. Moreover, the use of
progress based methods deteriorated the tracking and covering
capabilities of sub-populations that are residing on the peaks
with lower fitness values.

In this paper, an adaptive control framework (ACF) for
DOPs is presented to address the aforementioned DOP dif-
ficulties and considerations. ACF tries to cover and track
the promising multiple moving optima using multiple sub-
populations. By using multiple sub-populations, global diver-
sity is systematically maintained. Consequently, the algorithm
is capable of tracking the global optimum quickly if it re-
locates to the promising covered areas by the algorithm’s
sub-populations. One key issue in handling multiple sub-
populations is how to adapt the number of sub-populations
to the number of moving optima. ACF is an adaptive multi-
population framework using three types of sub-populations:
explorer, exploiter, and tracker. The explorer is used to ex-
plore the search space and find peaks. The exploiter further
optimizes the results achieved by the explorer to exploit the
peaks and move toward their summits while the explorer
is reinitialized to find another peak. The tracker aims to
cover the peak summit, and tracks it after environmental
changes. Additionally, the tracker provides some information
to estimate the number of peaks and shift severities. These
three types of sub-populations cooperate in order to efficiently
locate and track multiple optima. By discovering new peaks,
additional sub-populations will be added to the search space
effectively by adapting to the number of peaks. In problem
instances with large numbers of peaks, the number of sub-
populations is restricted to an upper bound threshold. The
sub-population generation mechanism of ACF prevents cre-
ating further sub-populations when the number of existing
sub-populations reaches the upper bound threshold. This is
achieved by removing the worst sub-population when a new
sub-population is initialized. Consequently, ACF maintains
its exploration capability by initializing new sub-populations.
Moreover, ACF utilizes an adaptive double-layer exclusion
mechanism to meliorate losing trackers when their peaks

IEEE TRANSACTIONS ON CYBERNETICS 3

become close. Additionally, this mechanism increases the
possibility of discovering and covering peaks that are close.
Furthermore, ACF benefits from an adaptive computational
resource allocation method that considers 1) roles of the sub-
populations such as the best and the explorer sub-populations,
2) rank of the sub-populations based on their best found
position, and 3) achievements of the sub-populations. Con-
sequently, the sub-populations that have done their tasks will
be removed from the resource allocation list, such that, more
computational resources can be assigned to the remaining sub-
populations.

In short, this paper makes the following major contributions:
• An adaptive sub-population generation method consider-

ing three types of sub-populations and an upper bound
for the number of sub-populations.

• An adaptive double-layer exclusion mechanism that in-
creases the capability of covering close peaks.

• An adaptive resource allocation method that considers
role, task achievements, and rank of the sub-populations.

The rest of this paper is organized as follows. Section II
covers the literature review on multi-population methods for
DOPs. Section III describes the proposed framework in detail.
Section IV conducts a comprehensive experimental studies on
the proposed framework. Finally, Section V concludes this
paper.

II. RELATED WORKS

Tracking moving optima (TMO) using multi-population
approaches is one of the most efficient and popular methods
for tackling DOPs [1], [11], [16], [23]. Since this paper focuses
on TMO using a multi-population framework, we only focus
on the most relevant methods in which the multi-population
approaches are utilized for TMO. More general surveys can
be referred to [1], [11], [16], [23]

Self organizing scouts (SOS) [24] is the first method which
is capable of fulfilling TMO. SOS uses two types of sub-
populations, i.e., a sub-population for exploring the landscape
and finding peaks, and a number of smaller sub-populations
for exploiting peaks and tracking them. Later, the framework
of SOS with some modifications has been utilized in many
multi-population algorithms [25]–[28].

A parent-child approach, denoted as fast multi-swarm opti-
mization (FMSO), is proposed in [29]. In FMSO, a large parent
sub-population is responsible for finding promising areas.
When the best found position by the parent sub-population
has been improved, a new child sub-population is created
around the best found position to exploit this area. Child sub-
populations have fewer numbers of individuals in comparison
to the parent sub-population. On the one hand, the core
optimizer for the parent sub-population must be a diversity
maintaining method with a high exploration capability. On
the other hand, the child sub-populations should benefit from
optimizers with fast convergence speeds and high exploitation
capabilities. If any individual from the parent sub-population
lies inside the search region of any child sub-population, it
will be randomized.

Two PSO based multi-swarm algorithms, called mQSO and
mCPSO, were proposed in [4]. In these two algorithms, the

used methods to addresses the local diversity loss issue are
different. On the one hand, in mCPSO, charged particles
are used. The update rules of these particles include an
acceleration part to avoid collision and to create repulsion
between individuals. Consequently, the local diversity of each
sub-population is maintained over time due to the created
repulsion between individuals. On the other hand, in mQSO,
quantum particles are used to maintain the local diversity
of each sub-population over time. The quantum particles are
generated randomly in a hyper-ball whose center is the best
found position by the sub-population and its radius is defined
with rcloud. Except for the used methods that address the local
diversity loss issue, other components of these two algorithms
are identical. The number of sub-populations is fixed in both
algorithms. To ensure continued search for possible uncovered
promising peaks, an anti-convergence approach is utilized
in which the worst sub-population is re-initialized when all
the sub-populations have been converged. On one hand, a
shortcoming of having a fixed number of sub-populations
is that the algorithm wastes computational resources due
to redundant sub-populations when the number of peaks is
smaller than the number of sub-populations. On the other
hand, the algorithm misses some peaks when the number of
peaks is larger than the number of sub-populations. Moreover,
an exclusion mechanism is utilized to avoid covering a peak
with multiple sub-populations. In the exclusion mechanism,
a threshold is used to determine the radius of the mutual
exclusion. If the Euclidean distance between the best found
positions of two sub-populations is less than the threshold, the
inferior one is re-initialized. An improved version of mQSO
is proposed in [30], in which the procedure of increasing
diversity after each environmental change, is improved. To
this end, individuals of each sub-population are sorted based
on their fitness and divided into three groups. The individuals
of the best group remain unchanged. The individuals of the
second group are randomized around the best found position
to address local diversity loss. And individuals of the worst
group are randomized across the search space to increase the
global diversity of the population.

Adaptive mQSO (AmQSO) [14] is the first adaptive multi-
population method whose number of sub-populations is
adapted to the number of discovered peaks. AmQSO starts
with a single sub-population. After converging to a peak,
another sub-population is created and initialized. Considering
the unknown number of peaks, this algorithm performs a
continual search to find uncovered peaks by initializing new
sub-populations. Unlike mQSO that uses quantum particles
during the course of optimization to maintain the local diver-
sity of each sub-population over time, AmQSO only utilizes
them right after each environmental change to rediversify
each sub-population and address the local diversity loss issue.
Consequently, unlike mQSO, AmQSO does not waste any
computational resources to maintain the local diversity over
time. In addition, to determine exclusion radius, AmQSO
uses the number of sub-populations as the estimated number
of peaks. However, this estimation is very sensitive to the
accuracy of the convergence detection method and could be
error prone. This exclusion mechanism has been used widely

IEEE TRANSACTIONS ON CYBERNETICS 4

in designing DOP algorithms [11].
DynDE is a multi-population differential evolution (DE)

with a fixed number of sub-populations [31]. This algorithm
utilizes Brownian individuals around the best found position
in order to maintain the diversity of sub-populations. Plessis
and Engelbrecht [20] proposed an improved DynDE which
utilizes a modified exclusion mechanism. In this mechanism,
a mid-point is used in order to save some of the tracker
sub-populations whose peaks’ distance become less than the
exclusion radius/threshold. If the fitness value of the mid-point
is less than the best found positions of the involved sub-
populations, then both would be kept. This mechanism can
only cover the circumstances when the mid-point is located
in the valley between the pair of involved peaks, and it
cannot improve the performance significantly. Moreover, the
improved DynDE uses a resource allocation mechanism which
prioritizes the optimization of promising peaks. Later, two dif-
ferent resource allocation methods based on learning automata
and performance index were added to DynDE [22]. One major
shortcoming of the aforementioned DynDE methods is the
fixed number of sub-populations. To address this shortcoming,
Pleassis and Engelbrecht introduced DynPopDE [21] which is
a DynDE with adaptive sub-population number.

FTmPSO [18] uses an adaptive multi-population approach
in which a finder sub-population with a larger size is respon-
sible for locating peaks. In addition, FTmPSO uses tracker
sub-populations with smaller size to do local search and
peak tracking. In FTmPSO, when the finder is converged, it
creates a tracker sub-population. Finder convergence detection
is determined based on the differences between the fitness
values of its best found positions during a predefined time
window. A sleep/awakening mechanism is used to deactivate
sub-populations whose velocity is lower than a threshold to
avoid wasting computational resources. In addition, a local
search method is utilized to improve the exploitation process
around the best found position.

Dynamic species-based PSO (DSPSO) [32] is the first
regrouping based multi-population algorithm for DOPs. Each
species in DSPSO is defined using the Euclidean distances
between particles as the similarity metric, and a radius to
determine species region. At the beginning of each iteration,
all particles are sorted according their fitness values and
species seeds are chosen sequentially from the best particles.
A particle becomes species seed if its Euclidean distances to
the current species seeds are more than the radius. Then, each
species seed with the particles inside its radius forms a sub-
population whose neighborhood best position is the species
seed. Modified versions of DSPSO have been used for high-
dimensional DOPs [33] and dynamic constrained optimization
problems [9].

Some other methods use clustering approaches to create
sub-populations [34]. In [13], a hierarchical clustering method
is used for developing sub-populations after environmental
changes. In addition, an overlapping detection mechanism
is utilized to determine whether two sub-populations have
been attracted to the same peak. The algorithm merges over-
lapped sub-populations and removed the redundant individ-
uals. Moreover, the sub-populations whose diversities fall

under a predefined threshold are deactivated. Besides, global
diversity is increased after environmental changes. In [35], a
clustering-based multi-population framework for undetectable
DOPs, where detecting environmental changes is challeng-
ing, is proposed. In this method, the diversity is increased
when a predefined portion of the initial population has been
removed/deactivated. Thereafter, this algorithm increases di-
versity by keeping the previous best found positions and
randomizing the rest of the population. Afterward, the cluster-
ing method is performed to form sub-populations. Since this
method does not depend on the change detection, it needs to
re-evaluate the memory (such as Pbest positions in PSO [36])
in each iteration. AMP [15] is another clustering based method
that uses an adaptive population size method based on the
historical data. In addition, AMP uses a peak hiding technique
to remove the attraction of the already discovered peaks.

Most existing multi-population methods utilize an exclusion
method to guarantee that each peak is covered by not more
than one sub-population. However, most existing exclusion
mechanisms suffer from some shortcomings as stated in Sec-
tion I. In addition, most multi-population algorithms do not
consider the importance of a systematic resource allocation.
As explained in Section I, the existing hibernating [15],
[17], [18] and progress based [20]–[22] methods have some
considerable flaws. Moreover, most existing adaptive multi-
population algorithms do not consider an upper-bound for the
number of sub-populations. Consequently, they suffer from the
shortage of computational resources to support a large number
of sub-populations. In the next section, a new DOP framework
is proposed to address the above mentioned issues.

III. PROPOSED DOP FRAMEWORK

A. Motivations

As stated in Section I, the effectiveness of a DOP al-
gorithm depends on its speed in responding to the envi-
ronmental changes by addressing global and local diversity
losses, and managing computational resources consumptions.
Multi-population approaches usually try to maintain global
diversity by utilizing multiple sub-populations. To maintain
the exploitation capability of the sub-populations that are
responsible for tracking optima, their local diversity must be
adjusted after each environmental change. The diversity of
trackers, must be increased based on the shift severity of
peaks. Since the size of shift severities is unknown to the
algorithm, it must be estimated using the gathered information
by the sub-populations. However, another crucial decision is
that how to select sub-populations to participate in gathering
the information.

As stated in Section I, multi-population methods bene-
fit from exclusion methods to prevent waste of computa-
tional resources due to performing exploitation with redun-
dant sub-populations. However, an important challenge of
designing an improved exclusion mechanism is to distinguish
whether sub-populations residing on separate peaks or the
same peak, especially when peaks are close to each other.
Controlling and monitoring the cost of computational re-
sources by different sub-populations must be considered in

IEEE TRANSACTIONS ON CYBERNETICS 5

order to improve the effectiveness of DOP algorithms. To
this end, sub-populations must be prioritized based on their
tasks, progress/achievements, or fitness. Accordingly, compu-
tational resources should be adaptively allocated to each sub-
population in each iteration.

The rest of this section describes the proposed adaptive
control framework (ACF) that addresses the above-mentioned
considerations by: 1) an adaptive sub-population generation
approach to cover and track multiple optima, and maintain
the global diversity, 2) an adaptive double-layer exclusion
mechanism to avoid exploiting a peak with more than one
sub-population, 3) an adaptive resource allocation method to
control the cost of computational resource by sub-populations,
and 4) an adaptive change reaction mechanism to increase the
local diversity of sub-populations based on the estimated shift
severity. The details of these approaches are described in the
rest of this section.

B. Adaptive sub-population generation

In ACF, sub-populations are categorized into three groups
based on the diversity of their individuals, which is used to
determine their convergence status. These three categories are:
1) sub-populations in the first stage of their life cycle, denoted
as explorers, 2) sub-populations in their second stage of life
cycle, denoted as exploiters, and 3) sub-populations in the
third stage of their life cycle, denoted as trackers. Each sub-
population in ACF is initialized randomly across the search
space as an explorer, whose main responsibility is to explore
the search space for finding a peak. When the diversity of an
explorer becomes less than a threshold R, ACF assumes that
it has been attracted to a peak. This assumption is made on
the basis of the observations that the individuals of converged
populations are relatively closer to each other [4], which has
been used in many multi-population methods for convergence
detection [10], [11], [37]. Thus, when the diversity of an
explorer becomes less than R, it enters the second stage of
its life cycle and becomes an exploiter. Figure 1(a) and 1(b)
show an example of how an explorer becomes an exploiter as
the diversity changes. The main responsibility of an exploiter
is to move toward the peak summit. When an exploiter has
reached close enough to the peak summit, it enters the third
stage of its life cycle and turns into a tracker, controlled
by a threshold r. The main responsibilities of a tracker are
to find the new peak summit position after environmental
changes, and provide some information for estimating the shift
severities and the number of optima.

The diversity in ACF is calculated in a dimension-wise
manner, i.e. it is a D-dimensional vector where D is the
number of problem dimensions. Diversity of a sub-population
i in jth dimension is calculated as follows:

di,j = max
k∈popi

(|xk,j − x̄i,j |), (3)

where

x̄i,j =

∑
k∈popi xk,j

n
, (4)

where xk,j is the position of kth individual of ith sub-
population in jth dimension, x̄i,j is the average of jth di-
mension of all individuals in ith sub-population, and n is
the population size of each sub-population. In (3), di,j is the
largest distance in jth dimension between x̄i,j and xk∈popi,j .

As stated before, each sub-population in ACF has three
stages in its life cycle, determined by its d. The life cycle
stage of a sub-population i is determined using the following
formulation:

li =

1 ∃j ∈ {1, · · · , D} : di,j > Rj

2 ∀j ∈ {1, · · · , D} : di,j ≤ Rj ∧ ∃j : di,j > rj

3 ∀j ∈ {1, · · · , D} : di,j ≤ rj
(5)

where li is the life cycle stage of ith sub-population, and r and
R are two D-dimensional threshold vectors where rj < Rj
for all dimensions j ∈ {1, · · · , D}.

The efficiency of the convergence detection in ACF depends
on the values of r and R. In ACF, their values are calculated
as:

Rj = R′
Ubj − Lbj

max(1, |Ntr|)
, (6)

rj = r′
Ubj − Lbj

max(1, |Ntr|)
, (7)

where R′ and r′ are two positive constants where R′ > r′, Ubj
and Lbj are upper and lower bounds of the jth dimension of
the search space, Ntr is the set of trackers and |Ntr| is the
number of trackers, and max(1, |Ntr|) is used to avoid division
by zero when there is no tracker.

According to (6) and (7), r and R are determined adaptively
based on the estimated number of peaks (|Ntr|) and the
search range in different dimensions. The reason that we use
|Ntr| instead of the total number of sub-populations is mainly
attributed to the fact that the tracker sub-populations are
expected to be very close to the peak summits. Consequently,
their number is a suitable representative for the number of
peaks. Therefore, the outputs of (6) and (7) are adaptive to
the number of found peaks. In addition, these equations are
suitable for generic problems with different search ranges in
different dimensions or similar search ranges in all dimensions.

Using the above mentioned process, ACF starts with a
randomized explorer and when it becomes an exploiter, a
new explorer is initialized. Since there is no preliminary
information about the number of peaks or their number may
change over time, this procedure continues over the optimiza-
tion process in order to locate and cover promising peaks. A
shortcoming of the above mentioned sub-population genera-
tion method is that when the number of peaks is high, ACF
may create too many sub-populations. As stated in Section I,
this circumstance results in the shortage of computational
resources for each sub-population. Therefore, the number of
sub-populations must be bounded to an upper bound threshold
Nmax. In ACF, when the number of sub-populations reaches
Nmax, an anti-convergence mechanism [4] will be activated.
By activating this mechanism, instead of creating a completely
new sub-population, the sub-population with the worst best
found position is re-initialized to become the new explorer.

IEEE TRANSACTIONS ON CYBERNETICS 6

-50 0 50

x
1

-50

0

50

x
2

(a) li = 1

-50 0 50

x
1

-50

0

50

x
2

(b) li = 2

-50 0 50

x
1

-50

0

50

x
2

(c) li = 3

Fig. 1. An example of the three life cycles of a sub-population based on
(5) when it is an explorer 1(a), after converging to a peak and become an
exploiter 1(b), and when it converges to the peak’s summit and becomes a
tracker 1(c).

The proposed adaptive sub-population generating approach in
this section makes the framework capable of covering up to
Nmax most promising peaks in the environments. In addition,
in a case where the global optimum is not covered, the
exploration capability of the proposed framework is increased
by frequently reinitializing and giving chances to the explorer
sub-populations to converge to the highest peak.

C. Adaptive exclusion mechanism

As stated in Section I, establishing mutual exclusion around
each optimum/peak is crucial to avoid the waste of compu-
tational resources. Exclusion mechanisms are utilized by the
multi-population algorithms to address this issue. However, as
described in Section I, most existing exclusion mechanisms
are unable to locate and track peaks that are closer than the
predefined thresholds. To address this issue, ACF utilizes a
new adaptive double-layer exclusion mechanism that amelio-
rates the aforementioned shortcoming of the traditional single-
layer exclusion mechanism. The exclusion mechanism of ACF
works based on two different infinity norm distances E and e
with Ej > ej : ∀j ∈ {1, · · · , D}. E and e are two thresholds
where the former is related to a conditional mutual exclusion
and the latter is related to a restricted and conservative one.
The values of these two thresholds in each dimension are
calculated as follows:

Ej = E′
Ubj − Lbj

max(1, |Ntr|)
, (8)

ej = e′
Ubj − Lbj

max(1, |Ntr|)
, (9)

where E′ and e′ are two positive constants with E′ > e′. To
be specific, the procedure of the exclusion in ACF is designed
based on the categories and roles of the sub-populations and
their infinity norm distances.

Two sub-populations i and j enter the exclusion according
to e if:

∀k ∈ {1, · · · , D} : |g?i,k − g?j,k| ≤ ek, (10)

where g?i,k is kth dimension of the best found position by
the ith sub-population. Moreover, two sub-populations i and
j enter the exclusion according to E if:

∀k ∈ {1, · · · , D} : |g?i,k − g?j,k| ≤ Ek,∃k : |g?i,k − g?j,k| > ek,

(11)

popi

popj

popk

f(x)

x

disi,j disj,k

gi* gj* gk*

Fig. 2. An example of three sub-populations, including two trackers popi
and popj and an exploiter popk . In the traditional single-layer exclusion
mechanism, if the threshold of the exclusion is smaller than disj,k , both
popi and popk will be discarded. By contrast, in the proposed double-layer
exclusion mechanism, it is tried to keep the popi and discard popk .

According to the ACF exclusion procedure in Alg. 1, if
two sub-populations enter the exclusion based on e (line 1),
one of them will be removed or re-initialized. When two
sub-populations enter the exclusion area of each other based
on E (line 6), several situations can happen based on their
types. Trackers are robust to this layer of exclusion (line 8).
Moreover, for two involved exploiters, the inferior one will be
removed (line 10). When an explorer or exploiter enters the
mutual exclusion with a tracker, two situations can happen:
1) when the tracker has a better f(g?), it is highly possible
that the explorer/exploiter is moving toward the same peak,
such that the explorer/exploiter will be re-initialized/removed
(line 13) to save computational resources; 2) when the
tracker has a worse f(g?), it is highly possible that the
explorer/exploiter is moving toward another peak, so both
sub-populations can remain (line 15). Furthermore, when the
explorer enters the mutual exclusion with an exploiter, the
explorer will be re-initialized since in that area there is an
exploiter moving toward an optimum (line 17).

The main purpose of e is to control mutual exclusion
between trackers. Therefore, e′ is set to smaller values to avoid
removing trackers when their peaks are close together but not
closer than e. E is a threshold for controlling mutual exclusion
when explorer and exploiters are involved. The values of E
are larger than e to avoid that explorers or exploiters move
toward a peak which is already covered by a tracker. On one
hand, the exclusion mechanism of ACF tries to avoid losing
precious trackers whose under covered peaks are closer than
the outer layer threshold E. On the other hand, it tries to avoid
wasting valuable computational resources when non-tracker
sub-populations are closer than E.

D. Adaptive resource allocation

When there are several sub-populations in the search space,
it is very important to manage their computational resource
consumption. In this section, we propose an adaptive computa-
tional resource allocation by considering the following factors;

a) Role: The tracker residing the best peak is very
important since the performance of the framework in each en-
vironment is highly dependent on the best tracker performance.
In addition, the role of the explorer sub-population is very

IEEE TRANSACTIONS ON CYBERNETICS 7

Algorithm 1: Adaptive double-layer exclusion mech-
anism.

1 if popi and popj has entered the exclusion based on e
in (10) then

2 if One of them is explorer then
3 Reinitialize the explorer;

4 else
5 Remove the one with worse g?;

6 if popi and popj has entered the exclusion based on E
in (11) then

7 if both are trackers then
8 Do nothing;

9 else if both are exploiter then
10 Remove the one with worse g?;

11 else if popi is a tracker and popj is a non-tracker then
12 if g?i is better than g?j then
13 Remove/re-initialize popj ;

14 else
15 Do nothing;

16 else if popi is the explorer and popj is an exploiter then
17 Re-initialized popi;

significant since it is responsible for finding uncovered peaks.
If an uncovered peak becomes the best peak in an environment,
it can considerably deteriorate the performance. Therefore, a
suitable amount of computational resource must be allocated
to the explorer to increase the efficiency of finding uncovered
peaks.

b) Distance to peak summit: the main task of the trackers
is to track peak summits after environmental changes. Except
the best tracker, the rest of them do not need to continue
exploitation after they get close enough to the peak summit. In
such a situation, continuing exploitation for non-best trackers
does not noticeably influence the overall performance, while
it considerably consumes computational resources.

c) Rank: After an environmental change, the best tracker
according to the f(g?) may not be the same as the tracker
on the best peak. This can happen due to the characteristics
of peaks such as height and gradient. For example, the ratio
between the distance to the peak summit and the fitness
value can be significantly different in narrow and wide peaks.
Therefore, it is important to assign computational resources
to some better sub-populations (not only the best) according
to their best found position. However, even the inferior sub-
populations must be considered in the computational resource
allocation process. In fact, despite the low quality of some
trackers, it is important to maintain a short distance to their
peak summits in order to achieve an acceptable tracking
efficiency. In other words, when the distance of a tracker to its
peak summit becomes larger, it is possible that the tracker will
be attracted to another nearby peak, thus missing its own peak.
Therefore, it is important to allocate computational resources
to all sub-populations; however, the amount and the priority
must be considered.

d) Quick recovery: In many real-world applications, after
an environmental change, a new solution must be achieved [1]

sooner than the next environmental change.
ACF benefits from an adaptive resource allocation mech-

anism to address the above mentioned considerations. This
mechanism allocates the computational resources to |N | sub-
populations based on their f(g?) ranks, their types (i.e.
explorer and best sub-population), and their task achievements.
In each iteration of ACF, the procedure of the core optimizer
(e.g. PSO or DE) is performed for some active sub-populations
that are chosen using a selection method. The activity status
of a sub-population is determined based on a threshold a′. If
all dimensions of the diversity vector of a sub-population fall
below a′, it will be deactivated until the end of the current
environment [19]. Consequently, no computation resource is
allocated to the inactivated sub-populations. In fact, when the
diversity of a sub-population i is less than a′ in all dimensions,
it means that it has probably converged to its target. Therefore,
ACF assumes that this sub-population has achieved its goals
in the current environment by getting close enough to the new
position of the peak summit. Therefore, to avoid unnecessary
over-exploitation, the resource allocation mechanism does not
consider the deactivated sub-populations.

The resource allocation mechanism prioritizes the active
sub-populations based on their ranks. At the beginning of
each iteration, a selection procedure based on the rank of
sub-populations is performed. Only the active exploiters and
trackers participate in the selection process. First, a set Ti is
created for each active exploiter or tracker i as

Ti =

|Ti|⋃
j=1

{oi,j}, (12)

where oi,j is a token belonging to the active exploiter or
tracker i, and |Ti| is calculated as:

|Ti| = |Nac| − ranki + 1, (13)

where Nac denotes the set of all active trackers and exploiters,
and ranki is the rank of the ith active sub-population based
on f(g?i). Therefore, the best active sub-population is ranked
first and will have |Nac| tokens and the worst sub-population
will have one. All Ti are accumulated in a set T as:

T =

|Nac|⋃
i=1

Ti, (14)

where T is the set of all tokens and |T | = |Nac|(|Nac|+1)
2 . Then,

|Nac| tokens are chosen randomly from T without replacement
which form a set of selected tokens W . Then, each tracker
or exploiter i can perform |Wi| internal iterations in the
current iteration of ACF where Wi ⊆ Ti is the set of tokens
belonging to the tracker or exploiter i that has been selected
in the random selection. If |Wi| > 1, the tracker or exploiter
i performs |Wi| internal iterations; however, if it becomes
deactivated during this period, it will skip its internal iterations.
In fact, if an exploiter or tracker becomes deactivated or
removed by the exclusion mechanism, its possible remaining
selected tokens are removed from W .

The explorer is excluded from the selection process since
its rank can be worse than most sub-populations. In fact, the

IEEE TRANSACTIONS ON CYBERNETICS 8

Oa,1 Oa,2

Oa,3 Oa,4

Ob,1 Ob,2

Ob,3

Oc,1 Oc,2 Od,1

Ta Tb Tc Td

T

(a) Constructing T by (14) based on (12) and (13). There are 4 active sub-populations
Nac = {a, b, c, d} where f(g?

a) > f(g?
b) > f(g?

c) > f(g?
d).

Best pop Explorer

Ob,3 Oc,2
Oa,2 Oa,4

Wa Wb Wc

OB OE

W

(b) Constructing W by randomly choosing |Nac| = 4 tokens from T (white
circles) and adding a token for the best sub-population and another token for
the explorer (grey circles). In a case that the best sub-population has not been
deactivated, sub-population a is the same as the best sub-population, then
Wa = {oa,2, oa,4, oB}.

Fig. 3. An example of the selection procedure in Alg. 2.

Algorithm 2: Selection procedure.
1 Sort all {popi ∈ Nac};
2 foreach {popi ∈ Nac} do
3 Create Ti Using (12);

4 Create T Using (14);
5 W ← Choose |Nac| tokens from T randomly;
6 popbest ← Determine the sub-population whose g? is the

best;
7 popexplorer ← {popi|li = 1};
8 W ←W ∪ popexplorer ∪ popbest;

crucial task of the explorer, i.e. finding peaks, is independent
from its f(g?) rank. Therefore, the explorer performs an inter-
nal iteration in each iteration of ACF to maintain the capability
of finding uncovered peaks. In addition to the explorer, the role
of the best sub-population in each environment is vital due to
its significant influence on the performance of the framework.
The best sub-population contributes in the selection process
and possesses the highest number of tokens until it becomes
deactivated. On one hand, deactivating the best sub-population
degrades the performance of the framework. On the other
hand, maintaining its involvement in the selection process
without considering its activity status leads to the assignment
of too much computational resources to it. To address this is-
sue, similar to the explorer and independent from the selection
process, the best sub-population performs an internal iteration
of the core optimizer in each iteration of ACF. Therefore, in
each iteration of ACF, |Nac|+ 2 sub-populations execute one
iteration of the core optimizer. The procedure of the resource
allocation method is illustrated in Alg. 2.

E. Environmental changes and ACF reactions

ACF is a reaction based framework [11]. Consequently,
it needs to react to the environmental changes in order

to maintain its efficiency. Thus, it is necessary to detect
environmental changes, or get informed about them. Since
detecting environmental changes is a separate issue, in this
paper, it is assumed that the algorithms are informed about
environmental changes which is the case of many real-world
DOPs [10], [38]. Section S-V of the supplementary document
discusses the change detection mechanisms and incorporates
a representative one into the ACF. After each environmental
change, ACF performs the following actions: 1) shift severity
estimation, 2) increasing diversity, 3) re-evaluating all stored
solutions, and 4) activating all inactivated sub-populations.

In ACF, to address the local diversity loss issue, the lo-
cal diversity of each tracker is increased right after each
environmental change. One crucial matter in designing this
mechanism is the degree of local diversity that should be
injected. On the one hand, if the local diversity is increased
too much, it delays exploitation. On the other hand, if the
local diversity is too low, the tracking is hampered and the
individuals may collapse on a position before reaching the
optimum (i.e. peak summit). One suggestion is to increase the
local diversity based on the shift severity values (i.e., the peak
relocation length) [4]. To estimate the shift severity values,
the Euclidean distances between the best found positions by
each sub-population in the successive environments are usually
used in the literature [10]. However, in real-world problems,
different variables may have different shift severity values due
to their specific nature (e.g. temperature, pressure, and speed).
Therefore, in ACF, the shift severity value is estimated in each
dimension separately. To this end, ACF considers the estimated
shift severity as a D-dimensional vector calculated using the
g? position of trackers:

δj =
1

t− 1

t∑
t́=2

 1

|N̈ (t́)
tr |

∑
i∈N̈(t́)

tr

(∣∣∣g?i,j(t́) − g?i,j
(t́−1)

∣∣∣)
 ,

(15)

where δj is jth dimension of the estimated shift severity
vector δ, t is the current environment number, N̈ (t́)

tr is the
set of trackers in t́th environment which at least experienced
another environmental change

(
N̈

(t́)
tr ⊆ N

(t́)
tr

)
and |N̈ (t́)

tr | is

its cardinality, and g?i,j
(t́) is jth dimension of the best found

position by the ith tracker in t́th environment where i ∈ N̈ (t́)
tr .

Therefore, δ is the average of dimension-wise distances of the
best found positions in successive environments by trackers
i ∈ N̈tr until the current environment.

It is very important to appropriately increase the diversity
of the trackers in order to maintain their tracking capabilities.
Using δ is a suitable way to adapt the diversity of trackers to
the new peak summit positions. In ACF, in order to increase
the diversity of the tracker i, the g?i position is kept as an
individual (e.g. particles in PSO), and the rest of them will be
randomized using the following formula:

xi,j,k = g?i,j
(t−1) + r{−1, 1}δj (16)

where xi,j,k is jth dimension of kth individual in ith tracker,
g?i,j

(t−1) is the jth dimension of the best found position by ith

IEEE TRANSACTIONS ON CYBERNETICS 9

Algorithm 3: ACF change reaction.
1 Update shift severity vector using (15);
2 Activate all sub-populations;
3 foreach tracker i do
4 Keep g?i as an individual;
5 Randomize the rest of individuals based on (16);

6 forall popi do
7 Re-evaluate stored positions and update memory;

tracker in the previous environment, δj is the estimated shift
severity in jth dimension, and r{−1, 1} generates a random
sign (-1 or 1) with uniform distribution. By (16), the individu-
als are randomized on the corners of a hyper-rectangle whose
center is g?i and its sides are 2× δ. Consequently, using (16),
ACF addresses the local diversity loss issue by increasing the
local diversity of each tracker after each environmental change,
which results in regaining its exploitation capability in the new
environment. Note that since the diversity of the explorer and
exploiters are not low, their individuals are kept unchanged.

After rediversifying the trackers, all individuals in all sub-
populations including the explorer, exploiters and trackers are
re-evaluated to update the stored fitness values and address
the outdated memory issue [11]. Note that, at the end of
each environment, the best found positions by trackers can
be considered as representatives of the optima positions.
Therefore, by keeping their g? from the previous environment
and randomizing other individuals around them, the framework
tries to utilize the obtained information from the previous en-
vironment about the optima positions to accelerate the search
of new global optimum. The pseudo code of the reaction
procedure of ACF to the environmental changes is illustrated
in Alg. 3.

F. Procedure of ACF

Alg. 4 shows the work-flow of the proposed framework
(a more detailed flow chart is given by Figure S-1 in the
supplementary document). As shown in Alg. 4, ACF starts
with a randomized sub-population (line 1). At the beginning
of each iteration, the resource allocation mechanism selects
the sub-populations that are going to consume computational
resources in the current iteration (line 3). For each selected
token in the selection process, an internal iteration of the core
optimizer (e.g. PSO and DE) is executed for its owner (5).
Then, the exclusion will be checked for the sub-populations
(line 7) and if any sub-population has been removed by
the exclusion mechanism, its possible selected tokens will
be cancelled (line9). In case that a sub-population becomes
deactivated in line 10, its possible remained selected tokens
will be cancelled (line12). According to the maximum number
of sub-populations Nmax, when the explorer becomes an
exploiter, a new explorer will be initialized by creating a
new sub-population (line17) or re-initializing the worst one
(line15). At the end of each iteration of ACF, the change
reaction is done if an environmental change has been reported.
Note that if an environmental change is reported/detected,

Algorithm 4: ACF procedure.
1 Initialize pop1;
2 repeat
3 W ← Alg.2 ;
4 foreach selected token ok ∈W do
5 Execute the core optimizer for {popi|ok ∈ Ti};
6 Update li using (5);
7 Check exclusion between popi and others using

Alg. 1;
8 if any popj has been removed by exclusion then
9 Remove Wj from W ;

10 Update activity status popi;
11 if popi is deactivated then
12 Remove Wi from W ;

13 if {@popi|i ∈ {1, · · · , N} ∧ li = 1} then
14 if N = Nmax then
15 Reinitialize popworst with the worst g? as the

explorer;

16 else
17 Initialize a new pop as the explorer;

18 Update r,R, e, E using (7), (6), (9) and (8);
19 if Environment has changed then
20 React to change using Alg. 3;

21 until stopping criterion is met;

ACF will skip other processes and run the change reaction
procedure immediately.

The time complexity of ACF is O(|Nac| · N · D), which
is almost similar to many existing DOP algorithms [11].
The detailed complexity analysis of ACF can be found in
Section S-II of the supplementary document.

IV. EXPERIMENTS AND ANALYSIS

A. Benchmark functions

In this paper, three different baseline functions of moving
peaks benchmark (MPB) [5], DF1 [39], [40], and Gaussian
peaks benchmark (GPB) [41], are used to evaluate the per-
formance of algorithms. The details of the aforementioned
benchmark functions can be found in Section S-III of the
supplementary document.

B. Performance evaluation

To measure the performance of the algorithms, we use
the offline-error [42] (EO), which is the most well-known
performance indicator in the DOP literature. EO is the average
error of the best found position over all fitness evaluations:

EO =
1

t̂ϑ

t̂∑
t=1

ϑ∑
b=1

(
f (t)

(
x?(t)

)
− f (t)

(
x∗((t−1)ϑ+b)

))
,

(17)

where x?(t) is the optimum position at the tth environment,
t̂ is the number of environments, ϑ is the change frequency,
b is the fitness evaluation counter for each environment, and
x∗((t−1)ϑ+b) is the best found position at bth fitness evaluation
in the tth environment.

IEEE TRANSACTIONS ON CYBERNETICS 10

TABLE I
COMPARISON ALGORITHMS.

Algorithm Ref. Optimizer

mCMA-ES [10] CMA-ES [44]
AmQSO [14] PSO [43]
CPSO [13] PSO [43]
DSPSO [12], [14] PSO [43]
mPSO [10] PSO [43]
mQSO [4] PSO [43]
RPSO [45] PSO [43]
DynPopDE [21] DE/best/2/bin [31]
mbDE [10] DE/best/2/bin [20], [31]
mjDE [10] jDE [46], [47]

C. Comparison Algorithms

A set of 10 different DOP algorithms is chosen for com-
parisons which are listed in Table I. Different population
configurations are used among these methods [11], [16], for
example mQSO is a multi-population algorithm with constant
number of sub-populations, AmQSO, DSPSO, and CPSO are
the originators of the adaptive number of sub-populations, re-
grouping approaches, and clustering methods, respectively, and
RPSO is a single population method that uses randomization
approach after environmental changes.

To have a fair comparison, some modifications are done to
the algorithms as follows:

• The procedure of change detection is removed from all
methods. It is assumed that algorithms are informed about
the environmental changes like many real-world cases [1].
All algorithms react immediately to changes.

• All PSO based algorithms use PSO with constriction
factor [43].

• The shift severity estimation method from [38] is adopted
in all methods that require knowledge about the shift
severity (such as AmQSO).

D. Parameter Settings

The parameter settings of the benchmark problems are
shown in Table II. The experiments are done on the problem
instances with different peak shapes, dimensions, number of
peaks, change frequencies, and shift severities.

We use PSO with constriction factor [43] and DE
(DE/best/2/bin) [20] as the embedded core optimizers in
the proposed framework. The parameter settings of the core
optimizers in ACF embedded with PSO (ACFPSO) and DE
(ACFDE) are extracted from the sensitivity analysis provided
in [10]. For ACF, according to the reported sensitivity analysis
in Section IV-E r̃ = 0.3, R̃ = 0.8, ẽ = 0.3, Ẽ = 1.0.
Moreover, according to [10], a′ is set to 0.05 for deactivating
sub-populations. In addition, Nmax is set to 30 according to the
empirical study provided by Blackwell et al. [14]. Summary
of the parameter settings of ACFPSO and ACFDE are shown
in Table III. For parameters of the comparison algorithms,
default values suggested in their papers are used since our
investigations also demonstrate that these algorithms show
their best performance with those suggested settings.

TABLE II
PARAMETER SETTINGS OF THE BENCHMARK GENERATORS. THE DEFAULT

VALUES ARE HIGHLIGHTED.

Parameter Symbol Value

Number of peaks m 10 ,25,50,100,200
Dimension d 2, 5 ,10,20
Evaluations between changes ϑ 500, 1000, 2500, 5000
Shift severity s 1 ,2,5
Height severity h̃ 7
Width severity w̃ 1
Peaks location range SR [-50,50]
Peak function/shape – f1 (S-1), f2 (S-2) and f3 (S-3)
Peak height range – [30,70]
Peak width range – [1,12]
Initial height value – 50
Number of environments t̂ 100

TABLE III
PARAMETER SETTINGS OF ACFPSO AND ACFDE

Method Parameter Value Reference

PSO

χ 0.729843788 [43]
C1, C2 2.05 [43]
Neighbourhood topology global star [43]
Population Size 5 [10]

DE

F 0.5 [31]
Cr 0.6 [31]
strategy DE/best/2/bin [20]
Population Size 6 [10]

ACF

r in (7) 0.3 Fig. 4
R in (6) 0.8 Fig. 4
e in (9) 0.3 Fig. 4
E in (8) 1.0 Fig. 4
Deactivation threshold a′ 0.05 [10]
Max sub-population # (Nmax) 30 [14]

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.339

1.246

1.279

1.241

1.242

1.309

1.332

1.138 1.102

1.084

1.034

1.076

1.021

1.109

1.061

1.107

1.063

1.083

1.03

1.078

1.041

1.052

1.034

1.095

1.076

1.158

1.065

1.045

1.037

1.086

1.052

1.107

1.137

1.1

1.097

1.05

1.1

1.15

1.2

1.25

1.3

N/A

R′

(a)

r
′

E
rror

(E
O

)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.336

1.282

1.257

1.263

1.312

1.28

1.293

1.111 1.116

1.059

1.103

1.104

1.175

1.122

1.108

1.084

1.155

1.132

1.071

1.015

1.101

1.081

1.101

1.026

1.091

1.118

1.068

1.101

1.058

1.03

1.043

1.091

1.089

1.132

1.126

1.05

1.1

1.15

1.2

1.25

1.3

N/A

E′

(b)

e
′

E
rror

(E
O

)

Fig. 4. (a) Sensitivity analysis on different values of r′ and R′ in (6) and (7)
where e′ = 0.3 and E′ = 1.0, for optimizing the benchmark problems
with the default parameter settings from Table II. (b) Sensitivity analysis on
different values of e′ and E′ in (8) and (9) where r′ = 0.3 and R′ = 0.8.

IEEE TRANSACTIONS ON CYBERNETICS 11

10 25 50 100 200

Number of peaks (m)

0

0.5

1

1.5

2

2.5
E

rr
o

r
(E

O
)

With Resource Allocation

Without Resource Allocation

Fig. 5. Effect of using resource allocation mechanism on the performance of
the proposed framework on the benchmark problems with different number
of peaks (m) and the default parameter settings for the rest of parameters.

E. Sensitivity analysis

For sensitivity analysis, we use PSO as the core optimizer
of ACF. The experiments in this part cover investigations
on multi-population controlling parameters i.e. r′, R′, e′ and
E′. In addition, the impact of resource allocation on the
performance of the proposed framework is investigated. All
reported results in this part are based on 31 independent runs
and the figures are constructed based on their average values.
Pairwise Wilcoxon signed-rank tests with α = 0.05 are used
for statistical analysis.

To perform the sensitivity analysis on r′, R′, e′ and E′, we
disable the resource allocation mechanism to focus on the effi-
ciency of the proposed multi-population controlling approach.
Alternatively, the traditional Round Robin method is used for
resource allocation between sub-populations. According to the
sensitivity analysis that has been done on these parameters,
a good combination of their values is reported in Table III.
Fig. 4(a) shows the obtained EO values by the framework
with different combinations of r′ and R′ where e′ = 0.3 and
E′ = 1. As can be seen, the performance of the framework
is not highly sensitive to the values of r′ and R′, and there
are several combinations of these parameters whose results are
not significantly different. Fig. 4(b) shows the results of the
framework with different combinations of e′ and E′ where
r′ = 0.3 and R′ = 1.0. Similar to the reported results in
Fig. 4(a), the performance is not very sensitive to the values
of e′ and E′ and there are several combinations with not
significantly different performance.

One important observation from Fig. 4(b) is that when the
values of e′ and E′ are very close, i.e. E′ − e′ = 0.1, the
obtained results are worse that other combinations where the
differences between e′ and E′ are larger. In fact, in such
circumstances, the proposed exclusion mechanism acts similar
to the traditional exclusion mechanisms with a single (layer)
threshold. This observation indicates the superiority of the
double-layer exclusion.

After determining parameter settings for r′, R′, e′ and E′,
we add resource allocation mechanism to the framework to
investigate its impact. Fig. 5 compares the performance of the
framework with and without resource allocation mechanism
on the problem instances with different number of peaks
and default settings for the rest of parameters. As shown in
Fig. 5, resource allocation mechanism improves the results
significantly.

F. Comparison With other methods

In this section, we compare the performance of ACFPSO

and ACFDE with those of the algorithms from Table I. The
experiments of this part are done on several problem instances
with various characteristics such as different peak shapes, peak
numbers, shift severities, dimensions, and change frequencies.
All experiments are done 31 times with different random seed
numbers, and their average results and standard errors based
on EO from Section IV-B are reported. Moreover, the results
obtained by each algorithm in each problem instance are
compared to those of all peer algorithms based on Wilcoxon
signed-rank tests with α = 0.05. Furthermore, the numbers
of wins, ties and losses (w/t/l) are reported for each entry
based on the statistical analysis. The best result is highlighted
in each row and if there are more than one highlighted, it
means that they are not significantly different based on the
statistical analysis. All results are reported in Tables S-I, S-II,
S-III, and S-IV in the supplementary document. Summaries of
the reported results in the aforementioned tables, including the
overall number of win − loss of all algorithms, are reported
in Tables IV, V, VI, and VII of this section.

According to the reported results in Tables S-I, S-II, S-
III, and S-IV of the supplementary document, the landscapes
generated by (S-1) (f1) are more challenging to optimize in
comparison to those constructed by (S-2) and (S-3). Indeed,
as shown in Fig. 2(a), peaks generated by f1 are very narrow
(based on the width (w) values) which makes them harder to
explore. Additionally, since they are very narrow, algorithms
experience a considerable fitness drop after environmental
changes in comparison to f2 and f3. Moreover, results show
that the landscapes generated by f3 are easier to optimize
in comparison to the ones built by conical peaks (f2). One
important reason is the gradient of the regions around the
peak summits in Gaussian peaks (f3) which results in less
fitness drops after relocating peak summits. The illustrated
current error plots in Fig. S-3 of the supplementary document
demonstrate the above mentioned statements regarding the
hardnesses and fitness drops of the landscapes generated by
f1, f2 and f3.

Table IV summarises results obtained by the algorithms on
problem instances with different number of peaks and peak
shapes. According to this table, ACFPSO and ACFDE are
ranked first and second among all algorithms, respectively.
The superiority of ACFPSO against ACFDE is a result of the
higher convergence speed of PSO. In fact, PSO is the most
suitable and dominating core optimizer in the multi-population
DOP algorithms [10], [15], [23], [48]. According to Table IV,
problem instances with higher number of peaks are often more
challenging for the algorithms. This statement is more obvious
for the adaptive multi-population methods that create larger
numbers of sub-populations to adapt to the larger numbers
of peaks. Therefore, this circumstance leads to a decrease
in the amount of allocated computational resources to each
sub-population. As can be seen, ACFPSO and ACFDE could
maintain their efficiencies on the problem instances with larger
numbers of peaks. This observation is more evident on the
problem instances generated by f1 whose peaks are highly

IEEE TRANSACTIONS ON CYBERNETICS 12

narrow (see Table S-I of the supplementary document). In
fact, this characteristic of peaks generated by f1, significantly
decreases the possibility of covering smaller peaks by the
larger ones. Consequently, search spaces generated by f1

consist of larger numbers of visible peaks in comparison to
those of generated by f2 and f3. There are three main reasons
behind the less deterioration in the performance of ACFPSO

and ACFDE in problem instances with larger numbers of
peaks:

• The adaptive double-layer exclusion mechanism keeps
trackers on the close peaks, and increases the capability of
locating and covering peaks that are close to the covered
peaks. The role of the proposed exclusion mechanism
becomes more highlighted where the number of peaks is
higher which leads to a larger number of close peaks in
the landscape due to the higher peak density.

• The resource allocation mechanism whose importance
grows when the framework creates more sub-populations.
Such circumstances lead to boost the shortage of the
computational resources in each environment.

• The sub-population generation method prevents the over-
crowding situation, such that, the framework produces
a controllable and suitable number of sub-populations
according to the limited computational resources.

Table S-II compares the results obtained by the algorithms
on problem instances with different peak shapes and shift
severities. According to the reported results in this table,
problem instances with larger shift severities are more chal-
lenging for the algorithms since the tracking becomes more
computational resource and time consuming. Additionally, the
fitness drops after environmental changes are higher due to
the larger peak relocations. Table V summarizes the reported
results in Table S-II. As can be seen in this table, ACFPSO

and ACFDE outperform other methods in problems with larger
shift severities. One important reason behind this superior-
ity is the utilized resource allocation mechanism in ACF
in which superior sub-populations receive computational re-
sources faster. Consequently, the best found position improves
quickly in each environment. In addition, by considering sub-
populations residing on the inferior peaks, especially after de-
activating superior sub-populations, the framework maintains
an appropriate level of tracking across all the discovered peaks.

Table S-III reports the results obtained by the algorithms on
problem instances with different peak shapes and dimensions.
According to the results from this table, by increasing the
problem dimensionality, the performance of the algorithms
deteriorates. In the 2-dimensional problem instances, the re-
sults obtained by ACFPSO and ACFDE are not significantly
different and they share the first rank. The reason behind this
performance equality is that the embedded DE can compete
with PSO in lower dimensions. However, in higher dimen-
sions, ACFPSO outperforms ACFDE due to the superiority
of its core optimizer. In addition, in 10-dimensional problem
instances generated by f2 and f3, ACFDE cannot outperform
two PSO based algorithms, i.e. AmQSO and mPSO, since
the superiority of PSO to DE outweighs the efficiency of the
proposed framework. The summary of the reported results

in Table S-II is shown in Table V. Similar to the previous
experiments, ACFPSO and ACFDE ranked first and second
overall, respectively.

Finally, Table VII shows the summary of results obtained
by the algorithms on problem instances with different change
frequencies and peak shapes. According to this table, ACFPSO

shows the overall best performance. However, ACFDE is not
ranked second in overall in this table. Note that, although
ACFDE is not ranked second in this set of experiments, its
overall performance is still acceptable, ranking first among DE
based algorithms. Table VII shows the detailed results whose
summaries are shown in Table VII. According to this table,
this rank degradation is a consequence of the performance of
ACFDE on f3 based problem instances with higher change
frequencies. Indeed, according to the experiments, PSO is
performing very well on peaks generated by f3. Therefore, the
high convergence speed of some PSO based sub-populations
dominates the effectiveness of the proposed framework in
ACFDE.

V. CONCLUSION

In this paper, we have presented a new adaptive control
framework (ACF) for dynamic optimization problems (DOPs).
ACF benefits from an adaptive sub-population generation
approach whose sub-populations were grouped into three types
of explorers, exploiters, and trackers. The proposed sub-
population generation approach avoids generating too many
sub-populations in the problems with large numbers of peaks.
In addition,we have designed an adaptive double-layer exclu-
sion mechanism to improve the capability of the framework in
covering close peaks. Finally, an adaptive resource allocation
mechanism has been proposed to control the consumption of
computational resources by the sub-populations according to
their types, task achievements, and ranks. Two instantiated
algorithms with the proposed framework and a set of peer
algorithms have been used to optimize a set of moving multiple
peaks problem instances with different peak shapes, number
of peaks, shift severities, dimensions, and change frequencies.
The experimental results have demonstrated the superiority of
the ACF based algorithms in most test cases. In this paper,
we have focused on DOPs whose environmental changes are
informed to the algorithms. Nevertheless, dealing with the
DOPs with hard to detect environmental changes [35] where
algorithms are not informed about the environmental changes,
is an important topic for future work.

REFERENCES

[1] T. T. Nguyen, “Continuous dynamic optimisation using evolutionary
algorithms,” Ph.D. dissertation, University of Birmingham, 2011.

[2] S. Yang, “Genetic algorithms with memory-and elitism-based immi-
grants in dynamic environments,” Evolutionary Computation, vol. 16,
no. 3, pp. 385–416, 2008.

[3] M. Mavrovouniotis, F. M. Muller, and S. Yang, “Ant colony optimization
with local search for dynamic traveling salesman problems,” IEEE
Transactions on Cybernetics, vol. 47, no. 7, pp. 1743–1756, 2017.

[4] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[5] J. Branke, “Memory enhanced evolutionary algorithms for changing op-
timization problems,” in IEEE Congress on Evolutionary Computation.
IEEE, 1999, pp. 1875–1882.

IEEE TRANSACTIONS ON CYBERNETICS 13

TABLE IV
SUMMARY OF THE RESULTS (WIN-LOSS) OBTAINED BY THE ALGORITHMS ON THE PROBLEM INSTANCES WITH DIFFERENT PEAK SHAPES (f1, f2, f3) AND
NUMBER OF PEAKS (m = {10, 25, 50, 100, 200}). THE CORRESPONDING RESULTS CAN BE FOUND IN TABLE S-I OF THE SUPPLEMENTARY DOCUMENT.

Algorithms ACFPSO ACFDE AmQSO CPSO DynPopDE DSPSO mCMA-ES mbDE mjDE mPSO mQSO RPSO

win-loss 156 111 76 −83 −62 −10 59 0 −125 67 −26 −165

TABLE V
SUMMARY OF THE RESULTS (WIN-LOSS) OBTAINED BY THE ALGORITHMS ON THE PROBLEM INSTANCES WITH DIFFERENT PEAK SHAPES (f1, f2, f3)

AND SHIFT SEVERITIES (s̃ = {1, 2, 5}). THE CORRESPONDING RESULTS CAN BE FOUND IN TABLE S-II OF THE SUPPLEMENTARY DOCUMENT.

Algorithms ACFPSO ACFDE AmQSO CPSO DynPopDE DSPSO mCMA-ES mbDE mjDE mPSO mQSO RPSO

win-loss 98 67 32 −60 −65 39 36 16 −57 32 -35 −96

TABLE VI
SUMMARY OF THE RESULTS (WIN-LOSS) OBTAINED BY THE ALGORITHMS ON THE PROBLEM INSTANCES WITH DIFFERENT PEAK SHAPES (f1, f2, f3)

AND DIMENSIONS (D = {2, 5, 10, 20}). THE CORRESPONDING RESULTS CAN BE FOUND IN TABLE S-III OF THE SUPPLEMENTARY DOCUMENT.

Algorithms ACFPSO ACFDE AmQSO CPSO DynPopDE DSPSO mCMA-ES mbDE mjDE mPSO mQSO RPSO

win-loss 121 91 72 −74 −83 −21 22 −3 −40 68 −31 −126

TABLE VII
SUMMARY OF THE RESULTS (WIN-LOSS) OBTAINED BY THE ALGORITHMS ON THE PROBLEM INSTANCES WITH DIFFERENT PEAK SHAPES (f1, f2, f3)

AND CHANGE FREQUENCIES (ϑ = {500, 1000, 2500, 5000}). THE CORRESPONDING RESULTS CAN BE FOUND IN TABLE S-IV OF THE SUPPLEMENTARY
DOCUMENT.

Algorithms ACFPSO ACFDE AmQSO CPSO DynPopDE DSPSO mCMA-ES mbDE mjDE mPSO mQSO RPSO

win-loss 115 54 66 −97 −46 41 57 1 −89 69 −35 −132

[6] S. Jiang and S. Yang, “Evolutionary dynamic multiobjective optimiza-
tion: Benchmarks and algorithm comparisons,” IEEE Transactions on
Cybernetics, vol. 47, no. 1, pp. 198–211, 2017.

[7] J. Ding, C. Yang, Q. Xiao, T. Chai, and Y. Jin, “Dynamic evolu-
tionary multiobjective optimization for raw ore allocation in mineral
processing,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 3, no. 1, pp. 36–48, 2018.

[8] T. T. Nguyen and X. Yao, “Continuous dynamic constrained optimiza-
tion—the challenges,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 6, pp. 769–786, 2012.

[9] C. Bu, W. Luo, and L. Yue, “Continuous dynamic constrained optimiza-
tion with ensemble of locating and tracking feasible regions strategies,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 1, pp.
14–33, 2017.

[10] D. Yazdani, “Particle swarm optimization for dynamically changing
environments with particular focus on scalability and switching cost,”
Ph.D. dissertation, Liverpool John Moores University, Liverpool, UK,
2018.

[11] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, 2012.

[12] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 4, pp. 440–458, 2006.

[13] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 14, no. 06, pp. 959–974, 2010.

[14] T. Blackwell, J. Branke, and X. Li, “Particle swarms for dynamic
optimization problems,” in Swarm Intelligence: Introduction and Ap-
plications, C. Blum and D. Merkle, Eds. Springer Lecture Notes in
Computer Science, 2008, pp. 193–217.

[15] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, “An
adaptive multi-population framework for locating and tracking multiple
optima,” IEEE Transactions on Evolutionary Computation, vol. 20,
no. 05, pp. 590–605, 2016.

[16] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in dynamic
environments: a survey on problems, methods and measures,” Soft
Computing, vol. 15, no. 7, pp. 1427–1448, 2011.

[17] M. Kamosi, A. B. Hashemi, and M. R. Meybodi, “A hibernating multi-

swarm optimization algorithm for dynamic environments,” in 2010
Second World Congress on Nature and Biologically Inspired Computing
(NaBIC), 2010, pp. 363–369.

[18] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A
novel multi-swarm algorithm for optimization in dynamic environments
based on particle swarm optimization,” Applied Soft Computing, vol. 13,
no. 04, pp. 2144–2158, 2013.

[19] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,
“Scaling up dynamic optimization problems: A divide-and-conquer
approach,” 2019.

[20] M. C. du Plessis and A. P. Engelbrecht, “Using competitive population
evaluation in a differential evolution algorithm for dynamic environ-
ments,” European Journal of Operational Research, vol. 218, no. 1, pp.
7–20, 2012.

[21] M. C. du Plessis and A. P. Engelbrecht, “Self-adapting control pa-
rameters in differential evolution: A comparative study on numerical
benchmark problems,” Journal of global optimization, vol. 55, no. 1,
pp. 73–99, 2013.

[22] J. K. Kordestani, A. E. Ranginkaman, M. R. Meybodi, and P. Novoa-
Hernandez, “A novel framework for improving multi-population algo-
rithms for dynamic optimization problems: A scheduling approach,”
vol. 44, pp. 788–805, 2019.

[23] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence
for dynamic optimization: Algorithms and applications,” Swarm and
Evolutionary Computation, vol. 33, pp. 1–17, 2017.

[24] J. Branke, T. Kaussler, C. Smidt, and H. Schmeck, “A multi–population
approach to dynamic optimization problems,” in Evolutionary Design
and Manufacture, 2000, pp. 299–307.

[25] A. Sepas-Moghaddam, A. Arabshahi, D. Yazdani, and M. M. Dehshibi,
“A novel hybrid algorithm for optimization in multimodal dynamic en-
vironments,” in International Conference on Hybrid Intelligent Systems.
IEEE, 2012, pp. 143–148.

[26] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, M. R. Meybodi, and
M. Akbarzadeh-Totonchi, “mNAFSA: A novel approach for optimiza-
tion in dynamic environments with global changes,” Swarm and Evolu-
tionary Computation, vol. 18, pp. 38–53, 2014.

[27] D. Yazdani, A. Sepas-Moghaddam, A. Dehban, and N. Horta, “A novel
approach for optimization in dynamic environments based on modified
artificial fish swarm algorithm,” International Journal of Computational

IEEE TRANSACTIONS ON CYBERNETICS 14

Intelligence and Applications, vol. 15, no. 02, pp. 1 650 010–1 650 034,
2016.

[28] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A multi-
objective time-linkage approach for dynamic optimization problems with
previous-solution displacement restriction,” in Applications of Evolution-
ary Computation. Lecture Notes in Computer Science, 2018.

[29] C. Li and S. Yang, “Fast multi-swarm optimization for dynamic opti-
mization problems,” in International Conference on Natural Computa-
tion, vol. 7. IEEE, 2008, pp. 624–628.

[30] P. Novoa-Hernández, D. A. Pelta, and C. C. Corona, Improvement
Strategies for Multi-swarm PSO in Dynamic Environments. Springer
Berlin Heidelberg, 2010, pp. 371–383.

[31] R. Mendes and A. S. Mohais, “DynDE: a differential evolution for
dynamic optimization problems,” in Congress on Evolutionary Com-
putation, vol. 3, 2005, pp. 2808–2815.

[32] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 04, pp. 440–458, 2006.

[33] W. Luo, B. Yang, C. Bu, and X. Lin, “A hybrid particle swarm
optimization for high-dimensional dynamic optimization,” in Simulated
Evolution and Learning, Y. Shi, K. C. Tan, M. Zhang, K. Tang, X. Li,
Q. Zhang, Y. Tan, M. Middendorf, and Y. Jin, Eds. Springer Lecture
Notes in Computer Science, 2017, vol. 10593, pp. 981–993.

[34] C. Li and S. Yang, “A clustering particle swarm optimizer for dynamic
optimization,” in Congress on Evolutionary Computation, 2009, pp.
439–446.

[35] C. Li and S. Yang, “A general framework of multipopulation methods
with clustering in undetectable dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 16, no. 4, pp. 556–577, 2012.

[36] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Interna-
tional Conference on Neural Networks, vol. 04, 1995, pp. 1942–1948.

[37] C. Li, “An efficient benchmark generator for dynamic optimization
problems,” in Bio-inspired Computing – Theories and Applications,
M. Gong, L. Pan, T. Song, and G. Zhang, Eds. Communications in
Computer and Information Science, 2016, vol. 682, pp. 60–72.

[38] D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization over
time by learning problem space characteristics,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 01, pp. 143–155, 2019.

[39] R. W. Morrison and K. A. D. Jong, “A test problem generator for
non-stationary environments,” in Proceedings of the 1999 Congress on
Evolutionary Computation-CEC99, vol. 3, 1999, pp. 2047–2053.

[40] R. W. Morrison, Designing Evolutionary Algorithms for Dynamic Envi-
ronments. Springer-Natural Computing Series, 2004.

[41] J. J. Grefenstette, “Evolvability in dynamic fitness landscapes: a genetic
algorithm approach,” in Proceedings of the 1999 Congress on Evolu-
tionary Computation-CEC99, vol. 3, 1999, pp. 2031–2038.

[42] J. Branke and H. Schmeck, “Designing evolutionary algorithms for dy-
namic optimization problems,” in Advances in Evolutionary Computing,
A. Ghosh and S. Tsutsui, Eds. Springer Natural Computing Series,
2003, pp. 239–262.

[43] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Congress on Evolutionary
Computation, vol. 1, 2001, pp. 84–88.

[44] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[45] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimization: de-
tection and response to dynamic systems,” in Congress on Evolutionary
Computation, vol. 2, 2002, pp. 1666–1670.

[46] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

[47] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer,
“Dynamic optimization using self-adaptive differential evolution,” in
Congress on Evolutionary Computation, 2009, pp. 415–422.

[48] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A new multi-
swarm particle swarm optimization for robust optimization over time,”
in Applications of Evolutionary Computation, G. Squillero and K. Sim,
Eds. Springer Lecture Notes in Computer Science, 2017, vol. 10200,
pp. 99–109.

