1,278 research outputs found
WARWICKSHIRE (Reino Unido) (Inglaterra). Mapas generales. 1793 (1787-1789). 1:65000
Escalas gráficas de 6 millas estatutarias de 69 1/2 al grado [= 14,8 cm] y 6 millas geográficas de 60 al grado [= 17,2 cm]. Coordenadas referidas al meridiano de Londres ( O 1°59'0''--O 1°03'30''/N 52°42'00''--N 51°57'00'') Se traza además el meridiano que pasa por Warwick. Recuadro geográfico de 5' en 5'. Orientado con lis en rosa de ocho vientos prolongadosOrografía a trazosDestaca especialmente la división administrativaTabla de signos convencionales para indicar lugares importanrtes de feria de mercado, casas de caballeros campesinos y granjas, iglesias, capillas y demás edificios religiosos y caminosLeyenda explicativa sobre un diagrama que hay inserto en el documento, para calcular las distancias entre los diversos puntos del condadoDecorado con el grabado del catillo de Warwick y St Mary's TowerInserta un diagrama en el que aparecen reflejados algunas de las triangulaciones geodésicas realizadas en la elaboración de este map
Collective decision-making on triadic graphs
Many real-world networks exhibit community structures and non-trivial clustering associated with the occurrence of a considerable number of triangular subgraphs known as triadic motifs. Triads are a set of distinct triangles that do not share an edge with any other triangle in the network. Network motifs are subgraphs that occur significantly more often compared to random topologies. Two prominent examples, the feedforward loop and the feedback loop, occur in various real-world networks such as gene-regulatory networks, food webs or neuronal networks. However, as triangular connections are also prevalent in communication topologies of complex collective systems, it is worthwhile investigating the influence of triadic motifs on the collective decision-making dynamics. To this end, we generate networks called Triadic Graphs (TGs) exclusively from distinct triadic motifs. We then apply TGs as underlying topologies of systems with collective dynamics inspired from locust marching bands. We demonstrate that the motif type constituting the networks can have a paramount influence on group decision-making that cannot be explained solely in terms of the degree distribution. We find that, in contrast to the feedback loop, when the feedforward loop is the dominant subgraph, the resulting network is hierarchical and inhibits coherent behavior
Median knock-down time as a new method for evaluating insecticide-treated textiles for mosquito control
<p>Abstract</p> <p>Background</p> <p>Insecticide treated bed nets are major tools for the Roll Back Malaria campaign. There are two types of Long-Lasting Insecticide-treated Nets (LNs) on the market: coated nets and insecticide-incorporated nets. Nets provided to this market need a recommendation from the World Health Organization to be purchased by donors and NGOs. During laboratory study (phase I), the first step consists in evaluating the wash resistance of a new LN product. When insecticide-incorporated nets are washed, it takes time to regenerate the insecticidal activity, i.e. insecticide must migrate to the net surface to be accessible to mosquitoes. The interval of time required for regeneration must be carefully determined to ensure the accuracy of further results. WHOPES procedures currently recommend the determination of the regeneration time by using mortality data. However, as mortality cannot exceed 100%, a LN that regenerates a surface concentration exceeding the dosage for 100% mortality, will have its regeneration time underestimated.</p> <p>Methods</p> <p>The Median Knock Down Time (MKDT) was determined as function of insecticide dosage on an inert surface, glass, and on polyester nettings using an acetone solution or a simple emulsion. Dosage response was also established for mortality data. The same method was then applied to a commercially polyethylene netting, currently under WHOPES evaluation, to determine the dynamics of regeneration as function of repeated washings. The deltamethrin content of these nets was estimated by Capillary Gas Chromatography (GC-ECD).</p> <p>Results</p> <p>MKDT was a linear function of log insecticide dosage on glass as on nettings. Mortality data were either 0 or 100% for most concentrations except for a narrow range. MKDT was log linear function of total deltamethrin content in a commercial polyethylene net exposed to washings. The regeneration time of this net increased with the number of washes and MKDT became higher. A new, easy and rapid method to determine MKDT is suggested.</p> <p>Discussion</p> <p>The MKDT is linearly correlated to log dosage on a given substrate and shows no saturation as mortality data do. It is suited to determine regeneration time of a product that is exposed to a stress, like washing or heating, where the process impacts on the bio-availability of the insecticide. Mortality data are useful for measuring product efficacy, whereas MKDT are better to measure dynamics of surface concentration like regeneration after a stressing process. Change in MKDT can be used to illustrate the loss of insecticide due to washing, but the slope of the curve is product and surface-dependent.</p
Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo
The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity
Construct-level predictive validity of educational attainment and intellectual aptitude tests in medical student selection: meta-regression of six UK longitudinal studies
Background: Measures used for medical student selection should predict future performance during training. A problem for any selection study is that predictor-outcome correlations are known only in those who have been selected, whereas selectors need to know how measures would predict in the entire pool of applicants. That problem of interpretation can be solved by calculating construct-level predictive validity, an estimate of true predictor-outcome correlation across the range of applicant abilities.
Methods: Construct-level predictive validities were calculated in six cohort studies of medical student selection and training (student entry, 1972 to 2009) for a range of predictors, including A-levels, General Certificates of Secondary Education (GCSEs)/O-levels, and aptitude tests (AH5 and UK Clinical Aptitude Test (UKCAT)). Outcomes included undergraduate basic medical science and finals assessments, as well as postgraduate measures of Membership of the Royal Colleges of Physicians of the United Kingdom (MRCP(UK)) performance and entry in the Specialist Register. Construct-level predictive validity was calculated with the method of Hunter, Schmidt and Le (2006), adapted to correct for right-censorship of examination results due to grade inflation.
Results: Meta-regression analyzed 57 separate predictor-outcome correlations (POCs) and construct-level predictive validities (CLPVs). Mean CLPVs are substantially higher (.450) than mean POCs (.171). Mean CLPVs for first-year examinations, were high for A-levels (.809; CI: .501 to .935), and lower for GCSEs/O-levels (.332; CI: .024 to .583) and UKCAT (mean = .245; CI: .207 to .276). A-levels had higher CLPVs for all undergraduate and postgraduate assessments than did GCSEs/O-levels and intellectual aptitude tests. CLPVs of educational attainment measures decline somewhat during training, but continue to predict postgraduate performance. Intellectual aptitude tests have lower CLPVs than A-levels or GCSEs/O-levels.
Conclusions: Educational attainment has strong CLPVs for undergraduate and postgraduate performance, accounting for perhaps 65% of true variance in first year performance. Such CLPVs justify the use of educational attainment measure in selection, but also raise a key theoretical question concerning the remaining 35% of variance (and measurement error, range restriction and right-censorship have been taken into account). Just as in astrophysics, ‘dark matter’ and ‘dark energy’ are posited to balance various theoretical equations, so medical student selection must also have its ‘dark variance’, whose nature is not yet properly characterized, but explains a third of the variation in performance during training. Some variance probably relates to factors which are unpredictable at selection, such as illness or other life events, but some is probably also associated with factors such as personality, motivation or study skills
Obesity, Ethnicity, and Risk of Critical Care, Mechanical Ventilation, and Mortality in Patients Admitted to Hospital with COVID-19: Analysis of the ISARIC CCP-UK Cohort
OBJECTIVE: The aim of this study was to investigate the association of obesity with in-hospital coronavirus disease 2019 (COVID-19) outcomes in different ethnic groups. METHODS: Patients admitted to hospital with COVID-19 in the United Kingdom through the Clinical Characterisation Protocol UK (CCP-UK) developed by the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) were included from February 6 to October 12, 2020. Ethnicity was classified as White, South Asian, Black, and other minority ethnic groups. Outcomes were admission to critical care, mechanical ventilation, and in-hospital mortality, adjusted for age, sex, and chronic diseases. RESULTS: Of the participants included, 54,254 (age = 76 years; 45.0% women) were White, 3,728 (57 years; 41.1% women) were South Asian, 2,523 (58 years; 44.9% women) were Black, and 5,427 (61 years; 40.8% women) were other ethnicities. Obesity was associated with all outcomes in all ethnic groups, with associations strongest for black ethnicities. When stratified by ethnicity and obesity status, the odds ratios for admission to critical care, mechanical ventilation, and mortality in black ethnicities with obesity were 3.91 (3.13-4.88), 5.03 (3.94-6.63), and 1.93 (1.49-2.51), respectively, compared with White ethnicities without obesity. CONCLUSIONS: Obesity was associated with an elevated risk of in-hospital COVID-19 outcomes in all ethnic groups, with associations strongest in Black ethnicities
Incommensurable worldviews? Is public use of complementary and alternative medicines incompatible with support for science and conventional medicine?
Proponents of controversial Complementary and Alternative Medicines, such as homeopathy, argue that these treatments can be used with great effect in addition to, and sometimes instead of, ?conventional? medicine. In doing so, they accept the idea that the scientific approach to the evaluation of treatment does not undermine use of and support for some of the more controversial CAM treatments. For those adhering to the scientific canon, however, such efficacy claims lack the requisite evidential basis from randomised controlled trials. It is not clear, however, whether such opposition characterises the views of the general public. In this paper we use data from the 2009 Wellcome Monitor survey to investigate public use of and beliefs about the efficacy of a prominent and controversial CAM within the United Kingdom, homeopathy. We proceed by using Latent Class Analysis to assess whether it is possible to identify a sub-group of the population who are at ease in combining support for science and conventional medicine with use of CAM treatments, and belief in the efficacy of homeopathy. Our results suggest that over 40% of the British public maintain positive evaluations of both homeopathy and conventional medicine simultaneously. Explanatory analyses reveal that simultaneous support for a controversial CAM treatment and conventional medicine is, in part, explained by a lack of scientific knowledge as well as concerns about the regulation of medical research
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido
- …