12 research outputs found
Multi-modal Imaging of Retinal Capillary Hemangioblastoma
Retinal capillary hemangioblastoma is the most frequent and earliest manifestation of Von Hippel Lindau disease, though they can be an isolated finding without systemic involvement. Although peripheral lesions are most common, juxtapapillary lesions are found in 11 to 15% of cases and can mimic pseudopapilledema, papillitis, or choroidal neovascular membrane. Here we present a case of retinal capillary hemangioblastoma masquerading as pseudopapilledema
Recommended from our members
Imaging human macular pigments with visible light optical coherence tomography and superluminescent diodes.
We demonstrate superluminescent diodes (SLDs) for visible light optical coherence tomography (OCT) of the human retina. SLDs are less costly than supercontinuum sources and have lower intrinsic excess noise, enabling imaging closer to the shot noise limit. While single SLDs are not broadband, they provide power concentrated at specific wavelengths relevant to retinal function. As a new, to the best of our knowledge, application, we image human macular pigments (MPs), which are thought to both aid vision and protect against advanced age-related macular degeneration. Using the unique depth-resolved capabilities of OCT, we localize MPs in depth to Henle's fibers beneath the foveal pit in the living human retina. Our approach reduces the cost of visible light OCT to nearly that of near-infrared (NIR) OCT while also providing information about clinically relevant MPs which cannot be measured in the NIR
Association studies of catechol-O-methyltransferase (COMT) gene with schizophrenia and response to antipsychotic treatment
Aim: We investigated the catechol-O-methyltrasferase (COMT) gene, which is a strong functional and positional candidate gene for schizophrenia and therapeutic response to antipsychotic medication. Materials & methods: Single-locus as well as detailed haplotype-based association analysis of the COMT gene with schizophrenia and antipsychotic treatment response was carried out using seven COMT polymorphisms in 398 schizophrenia patients and 241 healthy individuals from a homogeneous south Indian population. Further responsiveness to risperidone treatment was assessed in 117 schizophrenia patients using Clinical Global Impressions (CGI). A total of 69 patients with a CGI score of 2 or less met the criteria of good responders and 48 were patients who continued to have a score of 3 and above and were classified as poor responders to risperidone treatment. Results: The association of SNP rs4680 with schizophrenia did not remain significant after adjusting for multiple testing. Haplotype analysis showed highly significant association of seven COMT marker haplotypes with schizophrenia (CLUMP T4 p-value=0.0001). Our results also demonstrated initial significant allelic associations of two SNPs with drug response (rs4633: χ2=4.36, p-value=0.036, OR: 1.80, 95% CI: 1.03-3.15; and rs4680: χ2=4.02, p-value=0.044, OR: 1.76, 95% CI: 1.01-3.06) before multiple correction. We employed two-marker sliding window analysis for haplotype association and observed a significant association of markers located between intron 1 and intron 2 (rs737865, rs6269: CLUMP T4 p-value=0.021); and in exon 4 (rs4818, rs4680: CLUMP T4 p-value=0.028) with drug response. Conclusion: The present study thus indicates that the interacting effects within the COMT gene polymorphisms may influence the disease status and response to risperidone in schizophrenia patients. However, the study needs to be replicated in a larger sample set for confirmation, followed by functional studies
A Quantitative Comparison of Human HT-1080 Fibrosarcoma Cells and Primary Human Dermal Fibroblasts Identifies a 3D Migration Mechanism with Properties Unique to the Transformed Phenotype
<div><p>Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results, we propose that HT-1080s migrate in synthetic ECM with functional properties that are a direct consequence of their transformed phenotype. </p> </div