341 research outputs found

    Complex unit lattice cell for low-emittance storage ring light source

    Full text link
    To achieve the true diffraction-limited emittance of a storage ring light source, such as ~10 pm.rad for medium-energy electron beams, within a limited circumference, it is generally necessary to increase the number of bending magnets in a multi-bend achromat (MBA) lattice, as in the future upgrade plan of MAX IV with a 19BA replacing the current 7BA. However, this comes with extremely strong quadrupole and sextupole magnets and very limited space. The former can result in very small vacuum chambers, increasing the coupling impedance and thus enhancing the beam instabilities, and the latter can pose significant challenges in accommodating the necessary diagnostics and vacuum components. Inspired by the hybrid MBA lattice concept, in this paper we propose a new unit lattice concept called the complex unit lattice cell, which can reduce the magnet strengths and also save space. The complex unit cell is numerically studied using a simplified model. Then as an example, a 17BA lattice based on the complex unit cell concept is designed for a 3 GeV storage ring light source with a circumference of 537.6 m, which has a natural emittance of 19.3 pm.rad. This 17BA lattice is also compared with the 17BA lattice designed with conventional unit cells to showcase the benefits of the complex unit cell concept. This 17BA lattice also suggests a new type of MBA lattice, which we call the MBA lattice with semi-distributed chromatic correction

    Left Anterior Fascicular Block After Transcatheter Closure of Ventricular Septal Defect in Children

    Get PDF
    Background: Arrhythmia is the most common complication after transcatheter closure of a ventricular septal defect (VSD). However, the effects of postprocedural left anterior fascicular block are not clear. This study presents the clinical characteristics, prognosis, and related risk factors of left anterior fascicular block after transcatheter closure of a VSD in children.Methods: The clinical and follow-up data of the patients in the Heart Center of Children's Hospital of Chongqing Medical University from June 2009 to October 2018 were reviewed. And 30 cases were eligible out of all 1,371 cases.Results: An electrocardiogram showed a left anterior fascicular block within 3 days, and most patients gradually returned to normal within 1–2 years, showing a dynamic change. Left ventricular end-diastolic dimension Z-score ranged from −2 to 2 in all children, and no decrease of left ventricular ejection fraction was found in all children. The high ratio between VSD size and body surface area [p < 0.05, odds ratio (OR) 2.6, 95% CI: 1.136–6.113] and large diameter difference between the occluder size and VSD size (p < 0.05, OR 2.1, 95% CI: 1.036–4.609) were independent risk factors for postprocedural left anterior fascicular block.Conclusions: The incidence of postprocedural left anterior fascicular block is not that low, and the overall prognosis is quite good at the current follow-up stage. No progressive severity has been found, such as complete left bundle branch block, double (triple) bundle branch block, and atrioventricular block, to have an influence on cardiac systolic and diastolic function

    Multi-Label Knowledge Distillation

    Full text link
    Existing knowledge distillation methods typically work by imparting the knowledge of output logits or intermediate feature maps from the teacher network to the student network, which is very successful in multi-class single-label learning. However, these methods can hardly be extended to the multi-label learning scenario, where each instance is associated with multiple semantic labels, because the prediction probabilities do not sum to one and feature maps of the whole example may ignore minor classes in such a scenario. In this paper, we propose a novel multi-label knowledge distillation method. On one hand, it exploits the informative semantic knowledge from the logits by dividing the multi-label learning problem into a set of binary classification problems; on the other hand, it enhances the distinctiveness of the learned feature representations by leveraging the structural information of label-wise embeddings. Experimental results on multiple benchmark datasets validate that the proposed method can avoid knowledge counteraction among labels, thus achieving superior performance against diverse comparing methods. Our code is available at: https://github.com/penghui-yang/L2DComment: Accepted by ICCV 2023. The first two authors contributed equally to this wor

    Ubiquitous short-range order in multi-principal element alloys

    Full text link
    Recent research in multi-principal element alloys (MPEAs) has increasingly focused on the exploration and exploitation of short-range order (SRO) to enhance material performance. However, the understanding of SRO formation and the precise tuning of it within MPEAs remains poorly understood, limiting the comprehension of its impact on material properties and impeding the advancement of SRO engineering. Here, leveraging advanced additive manufacturing techniques that produce samples with a wide range of cooling rates (up to 10^7 K/s) and an improved quantitative electron microscopy method, we characterize SRO in three CoCrNi-based MPEAs to unravel the role of processing route and thermal history on SRO. Surprisingly, irrespective of the processing and thermal treatment applied, all samples exhibit similar levels of SRO, suggesting that prevalent SRO may form during the solidification process. Atomistic simulations of solidification verify that local chemical ordering arises in the liquid-solid interface (solidification front) even under the extreme cooling rate of 10^11 K/s. This phenomenon stems from the swift atomic diffusion in the supercooled liquid, which matches or even surpasses the rate of solidification. Therefore, SRO is an inherent characteristic of most MPEAs, insensitive to variations in cooling rates and annealing treatments typically available in experiments. Integrating thermal treatment with other strategies, such as mechanical deformation and irradiation, might be more effective approaches for harnessing SRO to achieve controlled material properties.Comment: 27 pages, 5 figure

    Exploration and identification of six novel ferroptosis-related hub genes as potential gene signatures for peripheral nerve injury

    Get PDF
    Specific biomarkers of ferroptosis after peripheral nerve injury (PNI) are still under debate. In this study, 52 differentially expressed ferroptosis-related genes (DE-FRGs) were retrieved from publicly accessible sequencing data of intact and injured samples of rats with sciatic nerve crush injury. Functional enrichment analyses revealed that adipogenesis, mitochondrial gene sets, and pathways of MAPK, p53, and CD28 family were predominantly engaged in ferroptosis after PNI. Next, Cdkn1a, Cdh1, Hif1a, Hmox1, Nfe2l2, and Tgfb1 were investigated as new ferroptosis-associated hub genes after PNI. Subsequently, clustering correlation heatmap shows six hub genes are linked to mitochondria. The immunofluorescence assay at 0, 1, 4, 7, and 14 days indicated the temporal expression patterns of Tgfb1, Hmox1, and Hif1a after PNI were consistent with ferroptosis validated by PI and ROS staining, while Cdh1, Cdkn1a, and Nfe2l2 were the opposite. In summary, this study identified six hub genes as possible ferroptosis-related biomarkers for PNI, which may offer therapeutic targets for peripheral nerve regeneration and provide a therapeutic window for ferroptosis

    Comparative metabolomics analysis of milk components between Italian Mediterranean buffaloes and Chinese Holstein cows based on LC-MS/MS technology

    Get PDF
    Buffalo and cow milk have a very different composition in terms of fat, protein, and total solids. For a better knowledge of such a difference, the milk metabolic profiles and characteristics of metabolites was investigated in Italian Mediterranean buffaloes and Chinese Holstein cows were investigated by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in this study. Totally, 23 differential metabolites were identified to be significantly different in the milk from the two species of which 15 were up-regulated and 8 down-regulated in Italian Mediterranean buffaloes. Metabolic pathway analysis revealed that 4 metabolites (choline, acetylcholine, nicotinamide and uric acid) were significantly enriched in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, as well as purine metabolism. The results provided further insights for a deep understanding of the potential metabolic mechanisms responsible for the different performance of Italian Mediterranean buffaloes’ and Chinese Holstein cows’ milk. The findings will offer new tools for the improvement and novel directions for the development of dairy industry

    The role of environmental conditions, climatic factors and spatial processes in driving multiple facets of stream macroinvertebrate beta diversity in a climatically heterogeneous mountain region

    Get PDF
    Highlights • We tested patterns of multi-faceted beta diversity across mountain streams. • All three facets of beta diversities increase from the north slope to south slope. • Spatial variables were most important in structuring three facets of beta diversity. • Functional and phylogenetic beta diversity complement to taxonomic beta diversity. • Combining multi-faceted biodiversity is essential for management and conservation.There is a growing recognition that examining patterns of ecological communities and their underlying determinants is not only feasible based on taxonomic data, but also functional and phylogenetic approaches. This is because these additional facets can enhance the understanding of the relative contribution of multiple processes in shaping biodiversity. However, few studies have focused on multifaceted beta diversities in lotic macroinvertebrates, especially when considering driving factors operating at multiple spatial scales. Here, we examined the spatial patterns of multi-faceted (i.e., taxonomic, functional and phylogenetic) beta diversity and their components (i.e., turnover and nestedness) of macroinvertebrates in 50 sites in 10 streams situated in the north and south slope of the Qinling Mountains, the geographical dividing line of Northern and Southern China. We found that the streams draining the north slope showed significantly lower values of beta diversity based on all three facets than the streams draining the south slope. Such north-to-south increases of beta diversity were caused by the distinct climatic and local environmental conditions between the sides of the mountain range. Moreover, spatial variables generally played the most important role in structuring all facets and components of beta diversity, followed by local environmental and climatic variables, whereas catchment variables were less important. Despite the similar results of relative contribution of explanatory variables on each beta diversity facet, the details of community-environment relationships (e.g., important explanatory variables and explanatory power) were distinct among different diversity facets and their components. In conclusion, measuring functional and phylogenetic beta diversity provides complementary information to traditional taxonomic approach. Therefore, an integrative approach embracing multiple facets of diversity can better reveal the mechanisms shaping biodiversity, which is essential in assessing and valuing aquatic ecosystems for biodiversity management and conservation

    Atomic Sn–enabled high-utilization, large-capacity, and long-life Na anode

    Get PDF
    Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm−2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm−2) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode
    • …
    corecore