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Abstract

Buffalo and cow milk have a very different composition in terms of fat, protein, and total sol-

ids. For a better knowledge of such a difference, the milk metabolic profiles and characteris-

tics of metabolites was investigated in Italian Mediterranean buffaloes and Chinese Holstein

cows were investigated by liquid chromatography tandem-mass spectrometry (LC-MS/MS)

in this study. Totally, 23 differential metabolites were identified to be significantly different in

the milk from the two species of which 15 were up-regulated and 8 down-regulated in Italian

Mediterranean buffaloes. Metabolic pathway analysis revealed that 4 metabolites (choline,

acetylcholine, nicotinamide and uric acid) were significantly enriched in glycerophospholipid

metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabo-

lism, as well as purine metabolism. The results provided further insights for a deep under-

standing of the potential metabolic mechanisms responsible for the different performance of

Italian Mediterranean buffaloes’ and Chinese Holstein cows’ milk. The findings will offer new

tools for the improvement and novel directions for the development of dairy industry.

1. Introduction

Milk and dairy products demanded as an important source of energy and nutrients for human

nutrition has changed in the last decades, pointing to healthier products with higher nutri-

tional values and immunological benefits. Among domestic ruminants, buffalo and cow differ

in their milk composition in terms of fat and total solids, especially protein content (4.3% vs

3%) [1–4]. Italian Mediterranean buffalo (Bubalus bubalis) is an excellent buffalo breed with

the highest milk yield (2000–2400 kg in 305 days of milking) [5–9], and relative high fat con-

tent (8%-9%) and protein content (4%-5%) (http://www.gxbri.com/index.htm). One of the

most famous Italian dairy products “Mozzarella di bufala Campana” is processed from Italian
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Mediterranean buffalo milk, which is honored by the Protected Designation of Origin (PDO)

label since 1996 [10, 11]. Meanwhile, buffalo has been traditionally considered also less suscep-

tible than cattle to inflammatory diseases such as mastitis [12, 13].

The particular biological characteristics between the two kinds of milk may be due to the

differences in metabolic mechanisms of the two species (buffalo vs cow), and there is desire to

investigate these differences in the light of new available technologies. In this respect, along

with the development of informatics in support of new analytical methods, metabolomics has

revolutionized the metabolite profiling and biomarker identification [14]. Investigations have

demonstrated that the metabolites, as the products of metabolism, are involved in essential

biological process, such as immune disease, nutrition, etc. [14]. Moreover, metabolic profiles

have provided insight into the mechanism that underlying various economic traits, including

the milk production [15, 16], heat stress [17], feed efficiency [18, 19], flavor [20] and negative

energy balance [21]. Earlier evidences have proved that metabolites had strong correlation

with milk composition traits in dairy cattle [15, 22, 23], and several metabolites, such as cho-

line and succinic acid could represent biomarkers to distinguish the Holstein milk from those

of Jersey, buffalo, yak, and goat [24, 25]. These findings indicated that the intrinsic metabolic

status could enlighten important metabolic processes and essential cellular functions.

In the present study, we adopted a metabolomics approach to investigate the milk metabolic

profiles of Italian Mediterranean buffaloes and Chinese Holstein cows aiming to detect the

metabolites associated with milk content, which could provide valuable information to illustrate

the metabolic mechanism at the basis of the different milk performances of the two species.

2. Materials and methods

2.1. Ethics statement

All the research work was conducted were in compliance with the institutional guidelines and

under a protocol approved by the Animal Experimental Ethical Inspection committee of

Guangxi University (Gxu-2021-111).

2.2. Animals

A total of thirty individuals of Italian Mediterranean buffaloes (n = 15) and Chinese Holstein

cows (n = 15) were chosen from Guangxi Huaxu Buffalo Biological Technology Co., Ltd. and

the dairy farm of Guangxi University, respectively. All the selected animals were of similar par-

ity (2 or 3) were in middle lactation (100-150d) and housed in the same living, management

and feeding conditions for an adjustment period of 20 days before experimental milk collec-

tions. All animals were milked and fed twice a day (6:00–9:00 am and 14:00–15:00 pm) with

the nutrient diet (S1 Table), whereas water was always available during the whole experimental

period. Milk samples were collected in 50 mL sterilized tubes kept on ice bath, then trans-

ported to laboratory, divided into 2 mL aliquots and stored at -80˚C for further analysis.

2.3. Analysis of milk composition and extraction of metabolites

Milk composition and somatic cell count (SCC) were analyzed by MilkoScanTM FT120 (Foss

Electric A/S, Hillerød, Denmark). Metabolites were extracted using the method previously

described [26, 27]. Briefly, milk samples were thawed at room temperature, then 50 μL from

each sample was mixed with 350 μL of chilled extraction liquid, Methanol: Methyl-tert-butyl

ether (MTBE) in the ratio 1:1 (vol: vol), containing Vitamin E acetate (25 ppm) as internal

standard. The mixture was vortexed for 3 min, subsequently incubated at 4 ˚C for 10 min and

centrifuged at 14,000 g for 15 min at 4 ˚C. The supernatant was transferred to a 0.22 μm filter
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(Corning, SLC, USA), and centrifuged at 14,000 g for 5 min at 4 ˚C. Finally, clear supernatant

was used for analysis.

2.4. LC–MS/MS analysis

LC-MS/MS analysis was performed based on the Dionex UltiMate 3000 Uhplc system

equipped with Q Exactive mass spectrometer (Thermo Fisher Scientific, CA, USA) operating

in data-dependent acquisition (DDA) mode. Samples were injected onto a Hypersil GOLD

HPLC column (50×2.1mm, 1.9μm). The mobile phase consisted of a gradient system of (A)

10mM ammonium formate in water and (B) 10mM ammonium formate in methanol: 0–2

min,5% B; 2–13 min, 5–95% B; 13–16 min, 95% B; 16.1-18min, 5% B; delivered at 0.3 mL/min.

The electrospray ionization (ESI) source parameters were set as follows: spray voltage of

Q-Exactive mass spectrometer was set at 3.5kV/3.2kV in positive/negative polarity mode and

capillary temperature was 320 ˚C. Sheath and aux gas flow rates were set as 30psi and 10 arb,

respectively. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) was

operated with full scan + data dependent MS2 mode. The MS data was obtained with a scan

range from 100–1000 m/z at a resolution of 70,000. The automatic gain control (AGC) target

value was 300,000 and the maximum ion injection time was 100 ms. MS2 fragmentation was

carried out with a resolution of 17,500 with AGC target value at 100,000 and dynamic exclu-

sion for 10 s. Stepped collision energy (CE) fragmentation was achieved in the HCD cell at

three values of normalized collision energy (NCE), namely, 40-60-80 NCE in positive mode

and negative mode.

Raw LC-MS/MS data were analyzed by Compound Discoverer v. 3.0 (Thermo Fisher Scien-

tific, CA, USA) with an untargeted metabolomics workflow: spectra selection, blank subtrac-

tion, peak picking and retention time (RT) alignment, candidate comparison with the

mzCloud and ChemSpider database.

2.5. Data analysis

The milk composition data were statically analyzed by using Student’s t-test by SPSS version

22.0 (IBM Corp., Armonk, NY). Multivariate statistical analysis including principal compo-

nent analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA)

was executed to visualize the metabolic variations using SIMCA-P v.14.1 (Umetrics, Umeå,

Sweden) after pareto (Par) scaling. The quality of OPLS-DA model was evaluated by cumula-

tive parameters R2X, R2Y, and Q2 in cross-validation, and adopting a permutation test with

200 permutations.

Differential metabolites were identified using the variable influence on projection (VIP)

values> 1, P< 0.05 and |log2 (fold change) |>1. Hierarchical cluster analysis (HCA) was per-

formed by applying RStudio v.1.4.1106 (package pheatmap). Afterward, correlation network

analysis and metabolic pathway enrichment were carried out according to annotation in

Kyoto Encyclopedia of Genes and Genomes (KEGG) through MetaboAnalyst v.4.0 (https://

www.metaboanalyst.ca/) [28]. The correlation analysis between metabolites and milk composi-

tions was performed with single-Y Orthogonal extension of Partial Least-Squares (OPLS)

regression using SIMCA-P v.14.1 (Umetrics, Umeå, Sweden).

3. Results

3.1. Milk composition of Italian Mediterranean buffaloes and Chinese

Holstein cows

Descriptive statistical analysis evidenced that milk fat percentage, protein percentage and total

solid of Italian Mediterranean buffaloes were higher than those of Chinese Holstein cows,
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otherwise with lower SCC of Italian Mediterranean buffaloes; whereas, as expected, the con-

tent of lactose did not show differences between milk of Italian Mediterranean buffaloes and

Chinese Holstein cows (Table 1).

3.2. Metabolic profiles and multivariate analysis

Totally, 990 and 222 peaks were acquired in positive and negative ion modes, respectively.

PCA analysis was conducted to determine the global differences between the metabolic profiles

of the two groups. As depicted in Fig 1A and 1B, a clear separation between buffaloes and

cows was detected. The R2X (cum) and Q2 ranged from 0.787 to 0.827 and from 0.448 to

0.576, respectively. Subsequently, OPLS-DA models demonstrated a distinct discrimination

between the two groups (Fig 1C and 1D). The satisfactory values for the intercepts (in the posi-

tive ion mode, R2X (cum) = 0.651, R2Y (cum) = 0.973, Q2 = 0.935; in the negative ion mode,

R2X (cum) = 0.815, R2Y (cum) = 0.976, Q2 = 0.923) indicated that OPLS-DA models were sta-

ble and valid. Then, model cross-validation through permutation tests (200 times) generated

the intercepts of R2 and Q2 (positive ion mode, 0.547 and -0.597; negative ion mode, 0.588 and

-0.763, respectively) (S1 Fig). The data presented herein demonstrated that a clear and

Table 1. Descriptive data of milk composition and SCC of buffaloes and cows.

Sample Fat/% Protein/% Lactose/% TS/% SCC

1×104/mL

Buffaloes 8.60±0.44a 4.38±0.13a 5.10±0.07a 18.88±0.51a 6.40±1.00a

Cows 4.18±0.26b 2.95±0.10b 5.03±0.05a 12.70±0.30b 12.39±1.63b

1 a, b Mean values in the same column with different superscripts (P< 0.05) differ between the two groups.

2 TS: Total solid.

https://doi.org/10.1371/journal.pone.0262878.t001

Fig 1. PCA (A and B, in positive and negative modes, respectively) and OPLS-DA (C and D, positive and negative modes, respectively) scores plots of

Italian Mediterranean buffaloes’ milk and Chinese Holstein cows’ milk. The red circle represents buffaloes, while the green circle represents cows.

PCA = principal component analysis. OPLS-DA = orthogonal partial least squares discriminant analysis.

https://doi.org/10.1371/journal.pone.0262878.g001
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significant separation existed between Italian Mediterranean buffaloes and Chinese Holstein

cows by multivariate analyses (PCA and OPLS-DA).

3.3. Identification of differential metabolites

We identified 23 significantly differential metabolites between the two groups based on the

screening criteria with VIP > 1, P< 0.05 and |log2 FC|>1. In particular, 15 metabolites were

up-regulated and 8 were down-regulated in Italian Mediterranean buffalo vs Chinese Holstein

cows (Table 2). Hierarchical clustering analysis showed that each type of the two groups exhib-

ited a distinct metabolic pattern (Fig 2).

3.4. Correlation network and metabolic pathway analyses

To investigate the interactions of the significantly different metabolites, we performed correla-

tion network analysis. Five differential metabolites had strong correlation (S2 Fig), whereas the

pathway analysis of the complete set of 23 differentially were enriched with four main bio-

chemical pathways. Two metabolites (choline and acetylcholine) were involved in glyceropho-

spholipid metabolism. Each metabolite was in three pathways (nicotinate and nicotinamide

metabolism, glycine, serine and threonine metabolism and purine metabolism) (Fig 3). Conse-

quently, a hypothesized pathway map based on the above four key pathways, including the cor-

responding differentially regulated metabolites, was integrated and proposed (Fig 4).

Table 2. Significantly different milk metabolites up- and down-regulated in Italian Mediterranean buffaloes vs Chinese Holstein cows.

No. Metabolites MW(Da) RT(min) Log2FC P-value VIP

Up p853 DL-Carnitine 161.105 0.477 2.31 2.71E-02 7.36

p816 Acetyl-β-methylcholine 159.125 0.507 2.17 4.39E-02 6.04

p813 Acetylcholine 145.109 0.482 2.94 3.03E-03 4.51

p872 Glyceryl 1,2-Dicaprate 400.317 14.845 1.72 2.07E-03 4.51

p924 N-(tert-Butoxycarbonyl)-L-leucine 231.146 2.394 3.17 1.76E-04 4.42

p521 (2S)-2,3-Dihydroxypropyl (11Z,14Z)-11,14-icosadienoate 382.307 14.834 2.08 1.20E-04 3.46

p531 (R)-3-hydroxybutyrylcarnitine 247.141 0.697 3.11 8.69E-04 2.55

p963 salinosporamide B 279.146 5.272 5.57 7.25E-08 2.38

p750 2-methylbutyrylcarnitine 245.162 4.98 2.58 3.05E-04 1.87

p871 Glycerophospho-N-palmitoyl ethanolamine 453.284 14.014 3.75 6.78E-08 1.76

p874 glycidyl oleate 338.281 14.966 1.30 3.38E-03 1.35

n17 1-oleoyl-sn-glycero-3-phosphoethanolamine 479.300 14.373 3.74 4.83E-07 3.50

n36 1-stearoyl-sn-glycero-3-phosphoethanolamine 481.316 14.294 3.82 5.58E-08 3.04

n64 2-[(5-Amino-1, 3, 4-thiadiazol-2-yl)thio]-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)acetamide 313.102 2.595 6.31 6.00E-11 2.00

n123 1-linoleoyl-sn-glycero-3-phosphoethanolamine 477.285 14.042 3.18 1.33E-05 1.09

Dw p835 Choline 103.100 0.468 -2.03 2.57E-03 3.68

p861 Ethanoic anhydride 102.031 0.504 -1.84 3.78E-02 2.04

p933 N-Acetyl-α-D-glucosamine 180.062 0.504 -2.00 1.49E-02 1.90

p976 Trigonelline 137.047 0.504 -1.32 3.98E-02 1.86

p768 3-Hydroxy-5-methoxy-6-methyl-2,3-dihydro-4H-pyran-4-one 158.057 3.916 -6.67 7.34E-03 1.71

p937 Nicotinamide 122.048 0.66 -1.33 3.69E-03 1.33

n22 Uric acid 168.027 0.639 -3.37 9.58E-04 4.00

n28 Indole-3-carboxilic acid-O-sulphate 241.004 5.38 -2.27 1.78E-02 2.47

https://doi.org/10.1371/journal.pone.0262878.t002
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4. Discussion

In the last decades, the interest and demand for the buffalo milk has increased worldwide due

to its high-quality characteristics with a higher content of fat, protein, and total solids [3, 4]

and better dairy processing performances compared to bovine milk [29, 30]. Despite of these

positive aspects, buffaloes produce lower milk yield. The understanding of the biological

mechanisms behind these differences between the buffaloes and bovines gives rise to the inter-

est of many researchers [31, 32]. Previously, potential protein markers and intestinal micro-

biome have been positively associated with differences in milk components between buffaloes

and cows [33]. Inspite of the increasing advance metabolomics technologies application, still

very limited information is available on the metabolic mechanism addressing the

Fig 2. Heatmap of significantly differential metabolites between Italian Mediterranean buffaloes’ milk and

Chinese Holstein cows’ milk. The horizontal axis represents milk samples; The vertical axis represents metabolites.

https://doi.org/10.1371/journal.pone.0262878.g002
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Fig 3. Metabolic pathways for 23 significantly differential regulated metabolites. The x-axis represents the pathway effect, and the y-axis represents the

pathway name. Large sizes and dark colors represent the number of metabolites and p-value, respectively.

https://doi.org/10.1371/journal.pone.0262878.g003
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phenomenon. Therefore, in the present study, we established the milk metabolic profiles of

Italian Mediterranean buffaloes and Chinese Holstein cows, and identified 23 differential

metabolites between the two groups.

The analysis demonstrated that four metabolic pathways, including glycerophospholipid

metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabo-

lism, as well as purine metabolism that might subsequently affect milk content. Notably, four

differentially regulated metabolites (acetylcholine, choline, nicotinamide and uric acid) might

be potential biomarkers for the prediction of milk content.

The acetylcholine is one of the metabolites synthesized by choline [34]. Several studies have

stated that acetylcholine, acting as a neurotransmitter or an immune modulator, has beneficial

effects on the reduction of the oxidative stress, inflammation and apoptosis in a variety of

Fig 4. Hypothesized pathway map of the different milk performance between Italian Mediterranean buffaloes (red histograms) and Chinese Holstein cows

(green histograms). Metabolites with bars were identified in current study, among them, �Asterisks represent metabolites those significantly different between two

groups with p<0.05; Up-regulated and down-regulated metabolites screened by selection criteria are also indicated in red or green font, metabolites with black font

were with VIP<1. Four metabolic pathways are shown in boxes. The dotted line represents the indirect regulatory relationship and the solid line represents the direct

regulatory relationship. Additionally, in the histogram, red on the x-axis represents Italian Mediterranean buffaloes, whereas green represents Chinese Holstein cows.

The y-axis stands for the relative concentration of metabolites between the two groups.

https://doi.org/10.1371/journal.pone.0262878.g004
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human diseases [35, 36]. A recent study also suggested that acetylcholine is required for the

acute inflammatory response [37]. In our study, the content of this metabolite was higher in

buffalo milk than cow milk which might a higher resistance of buffaloes for the mastitis [13]

and confirm that acetylcholine might have an essential role in mammary immune response, a

higher concentration of acetylcholine in milk might act as an anti-inflammatory agent for

maintaining the health status of mammary gland.

Generally, choline is synthesized in the liver and released into blood. It has various func-

tions in biological processes such as cellular maintenance, cell growth and development [38].

However, it was reported that choline is also synthesized in mammary gland and located in the

bilayer membrane of the milk fat globule [39, 40]. Furthermore, independent studies have

proved that choline is an essential compound for hepatic lipid metabolism in dairy cattle [41,

42]. Investigations on dairy performance of lactating cows showed that milk composition was

affected by choline supplementation [43, 44]. Furthermore, a previous study has reported that

the relative concentration of choline in Holstein milk was higher than buffalo milk, which is

consistent with our observation [45]. Besides, choline as a potential metabolic biomarker has a

central role in mammary immune response and it was positively correlated with mastitis [40,

46].

The nicotinamide was differentially regulated between Italian Mediterranean buffalo and

Chinese Holstein was the nicotinamide. This metabolite acts as an important precursor of

NAD+ in milk [47], and it can interacted with NAD+ and NADP+ to play a fundamental role

in the glycolysis and the TCA cycle [48]. Cervantes et al. (1996) investigated the role of the nic-

otinamide on the improvement of milk traits in dairy cows. This metabolite could increase the

production of milk and protein, decrease fat percentage, but had no effect on either production

of Fat-corrected Milk (FCM) and percentage of protein [49]. Later on, Zak et al. (2006)

observed the involvement of the nicotinamide in lipid metabolism [50], whereas more recently

a strong positive correlation was detected between the nicotinamide and milk protein yield in

Holstein dairy cows [51]. These findings seem to confirm that a higher content of nicotin-

amide might provide more energy for milk production and explain the differences found

between the Chinese Holstein cows and the Italian Mediterranean buffaloes.

Uric acid, as one of the purine derivative elements, has considered a reliable indicator to

comprehensively assess cows’ healthy status and mammary energy status [52–54]. Further-

more, as an antioxidant entity, uric acid contributes to increase the oxidative stability of milk

[55]. In relation to milk production, previous researches indicated that uric acid was linearly

associated with milk yield in dairy cows [56, 57]. Giesecke et al. already in the 1994, have

detected a strongly positive correlation between energy intake and uric acid excretion in milk,

thus indicating the increasingly conversion rate of mammary purine with higher milk yield of

dairy cows [58]. Therefore, our findings confirmed that the uric acid might be considered as

an important metabolite supporting a higher milk fat content in Chinese Holstein cows vs Ital-

ian Mediterranean buffaloes.

Based on single and total metabolites pathways and their differential regulation, we manu-

ally integrated an overview pathway map and linked the information together (Fig 4). Results

indicated that four significant pathways including glycerophospholipid metabolism, nicotinate

and nicotinamide metabolism, glycine, serine and threonine metabolism, purine metabolism,

were interacted together. This was in line with the result of correlation network analysis of the

identified metabolites. Therefore, we hypothesized that the alteration of the four metabolic

pathways could have significant impact on this milk content trait. Definitely, further investiga-

tion on the four key-metabolites should be conducted to consider their concrete role in milk

metabolism and to develop an integrated metabolic biomarker map for the understanding and

improvement of milk performances of dairy animals. However, taken together, our results
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provided for the first-time useful information to elucidate the metabolic mechanisms of two

dairy species with very different milk performances for both milk yield and composition.

5. Conclusions

This study investigated the milk metabolic profiles of Italian Mediterranean buffaloes and Chi-

nese Holstein by LC-MS/MS. Four metabolites, including acetylcholine, choline, nicotinamide

and uric acid are related to the differences in milk content traits between Italian Mediterra-

nean buffaloes and Chinese Holstein. This finding will provide a new route to improve the

milk content traits in dairy species.
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