2,744 research outputs found

    LEAP: Efficient and Automated Test Method for NLP Software

    Full text link
    The widespread adoption of DNNs in NLP software has highlighted the need for robustness. Researchers proposed various automatic testing techniques for adversarial test cases. However, existing methods suffer from two limitations: weak error-discovering capabilities, with success rates ranging from 0% to 24.6% for BERT-based NLP software, and time inefficiency, taking 177.8s to 205.28s per test case, making them challenging for time-constrained scenarios. To address these issues, this paper proposes LEAP, an automated test method that uses LEvy flight-based Adaptive Particle swarm optimization integrated with textual features to generate adversarial test cases. Specifically, we adopt Levy flight for population initialization to increase the diversity of generated test cases. We also design an inertial weight adaptive update operator to improve the efficiency of LEAP's global optimization of high-dimensional text examples and a mutation operator based on the greedy strategy to reduce the search time. We conducted a series of experiments to validate LEAP's ability to test NLP software and found that the average success rate of LEAP in generating adversarial test cases is 79.1%, which is 6.1% higher than the next best approach (PSOattack). While ensuring high success rates, LEAP significantly reduces time overhead by up to 147.6s compared to other heuristic-based methods. Additionally, the experimental results demonstrate that LEAP can generate more transferable test cases and significantly enhance the robustness of DNN-based systems.Comment: Accepted at ASE 202

    Diterpene Synthases and Their Responsible Cyclic Natural Products

    Get PDF
    This review provides an overview of diterpene synthases which were initially identified via genetic and/or biochemical means, traversing all organisms researched to date

    Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6

    Get PDF
    Pressure can tune material's electronic properties and control its quantum state, making some systems present disconnected superconducting region as observed in iron chalcogenides and heavy fermion CeCu2Si2. For CaC6 superconductor (Tc of 11.5 K), applying pressure first Tc increases and then suppresses and the superconductivity of this compound is eventually disappeared at about 18 GPa. Here, we report a theoretical finding of the re-emergence of superconductivity in heavily compressed CaC6. The predicted phase III (space group Pmmn) with formation of carbon nanofoam is found to be stable at wide pressure range with a Tc up to 14.7 K at 78 GPa. Diamond-like carbon structure is adhered to the phase IV (Cmcm) for compressed CaC6 after 126 GPa, which has bad metallic behavior, indicating again departure from superconductivity. Re-emerged superconductivity in compressed CaC6 paves a new way to design new-type superconductor by inserting metal into nanoporous host lattice.Comment: 31 pages, 12 figures, and 4 table

    Geometric registration of images by similarity transformation using two reference points

    Get PDF
    A method for registering a first image to a second image using a similarity transformation. The each image includes a plurality of pixels. The first image pixels are mapped to a set of first image coordinates and the second image pixels are mapped to a set of second image coordinates. The first image coordinates of two reference points in the first image are determined. The second image coordinates of these reference points in the second image are determined. A Cartesian translation of the set of second image coordinates is performed such that the second image coordinates of the first reference point match its first image coordinates. A similarity transformation of the translated set of second image coordinates is performed. This transformation scales and rotates the second image coordinates about the first reference point such that the second image coordinates of the second reference point match its first image coordinates

    Experimental Realization of Br\"{u}schweiler's exponentially fast search algorithm in a homo-nuclear system

    Full text link
    Compared with classical search algorithms, Grover quantum algorithm [ Phys. Rev. Lett., 79, 325(1997)] achieves quadratic speedup and Bruschweiler hybrid quantum algorithm [Phys. Rev. Lett., 85, 4815(2000)] achieves an exponential speedup. In this paper, we report the experimental realization of the Bruschweiler$ algorithm in a 3-qubit NMR ensemble system. The pulse sequences are used for the algorithms and the measurement method used here is improved on that used by Bruschweiler, namely, instead of quantitatively measuring the spin projection of the ancilla bit, we utilize the shape of the ancilla bit spectrum. By simply judging the downwardness or upwardness of the corresponding peaks in an ancilla bit spectrum, the bit value of the marked state can be read out, especially, the geometric nature of this read-out can make the results more robust against errors.Comment: 10 pages and 3 figure

    Data Mining in Hospital Information System

    Get PDF

    N-(3,4-Dichloro­phen­yl)thio­urea

    Get PDF
    In the title compound, C7H6Cl2N2S, the benzene ring and the mean plane of the thio­urea fragment [—N—C(=S)—N] make a dihedral angle of 66.77 (3)°. Inter­molecular N—H⋯S and N—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional network
    corecore