71 research outputs found
Implementing Infopipes: The SIP/XIP Experiment
We describe an implementation of the Infopipe abstraction for information flow applications. We have implemented software tools that translate the SIP/XIP variant of Infopipe specification into executable code. These tools are evaluated through the rewriting of two realistic applications using Infopipes: a multimedia streaming program and a web source combination application. Measurements show that Infopipe-generated code has the same execution overhead as the manually written original version. Source code of Infopipe version is reduced by 36% to 85% compared to the original
Curcumin-Loaded Mixed Micelles: Preparation, Characterization, and In Vitro
The objective of this study was to prepare curcumin-loaded mixed Soluplus/TPGS micelles (Cur-TPGS-PMs) for oral administration. The Cur-TPGS-PMs showed a mean size of 65.54 ± 2.57 nm, drug encapsulation efficiency over 85%, and drug loading of 8.17%. The Cur-TPGS-PMs were found to be stable in various pH media (pH 1.2 for 2 h, pH 6.8 for 2 h, and pH 7.4 for 6 h). The X-ray diffraction (XRD) patterns illustrated that curcumin was in the amorphous or molecular state within PMs. The In vitro release test indicated that Cur-TPGS-PMs possessed a significant sustained-release property. The cell viability in MCF-7 cells was found to be relatively lower in Cur-TPGS-PM-treated cells as compared to free Cur-treated cells. CLSM imaging revealed that mixed micelles were efficiently absorbed into the cytoplasm region of MCF-7 cells. Therefore, Cur-TPGS-PMs could have the significant value for the chronic breast cancer therapy
Alkali burn induced corneal spontaneous pain and activated neuropathic pain matrix in the central nerve system in mice
Purpose: To explore whether alkali burn causes corneal neuropathic pain and activates neuropathic pain matrix in the central nerve system in mice.
Methods: A corneal alkali burn mouse model (grade II) was used. Mechanical threshold in the cauterized area was tested using Von Frey hairs. Spontaneous pain behavior was investigated with conditioned place preference (CPP). Phosphor extracellular signal-regulated kinase (ERK), which is a marker for neuronal activation in chronic pain processing, was investigated in several representative areas of the neuropathic pain matrix: the two regions of the spinal trigeminal nucleus (subnucleus interpolaris/caudalis ,Vi/Vc; subnucleus caudalis/upper cervical cord , Vc/C1), insular cortex, anterior cingulated cortex (ACC), and the rostroventral medulla (RVM). Further, pharmacologically blocking pERK activation in ACC of alkali burn mice was performed in a separate study.
Results: Corneal alkali burn caused long lasting damage to the corneal subbasal nerve fibers and mice exhibited spontaneous pain behavior. By testing in several representative areas of neuropathic pain matrix in the higher nerve system, phosphor extracellular signal-regulated kinase (ERK) was significantly activated in Vc/C1, but not in Vi/Vc. Also, ERK was activated in the insular cortex, ACC, and RVM. Furthermore, pharmacologically blocking ERK activation in ACC abolished alkali burn induced corneal spontaneous pain.
Conclusion: Alkali burn could cause corneal spontaneous pain and activate neuropathic pain matrix in the central nerve system. Furthermore, activation of ERK in ACC is required for alkali burn induced corneal spontaneous pain
Clearwater: Extensible, Flexible, Modular Code Generation
International audienceDistributed applications typically interact with a number of heterogeneous and autonomous components that evolve independently. Methodical development of such applications can benefit from approaches based on domain-specific languages (DSLs). However, the evolution and customization of heterogeneous components introduces significant challenges to accommodating the syntax and semantics of a DSL in addition to the heterogeneous platforms on which they must run. In this paper, we address the challenge of implementing code generators for two such DSLs that are flexible (resilient to changes in generators or input formats), extensible (able to support multiple output targets and multiple input variants), and modular (generated code can be rewritten). Our approach, Clearwater, leverages XML and XSLT standards: XML supports extensibility and mutability for inprogress specification formats, and XSLT provides flexibility and extensibility for multiple target languages. Modularity arises from using XML meta-tags in the code generator itself, which supports controlled addition, subtraction, or replacement to the generated code via XML-weaving. We discuss the use of our approach and show its advantages in two non-trivial code generators: the Infopipe Stub Generator (ISG) to support distributed flow applications, and the Automated Composable Code Translator to support automated distributed application deployment. As an example, the ISG accepts as input an XML description and generates output for C, C++, or Java using a number of communications platforms such as sockets and publish-subscribe
The alteration of the structure and macroscopic mechanical response of porcine patellar tendon by elastase digestion
Background: The treatment of patellar tendon injury has always been an unsolved problem, and mechanical characterization is very important for its repair and reconstruction. Elastin is a contributor to mechanics, but it is not clear how it affects the elasticity, viscoelastic properties, and structure of patellar tendon.Methods: The patellar tendons from six fresh adult experimental pigs were used in this study and they were made into 77 samples. The patellar tendon was specifically degraded by elastase, and the regional mechanical response and structural changes were investigated by: (1) Based on the previous study of elastase treatment conditions, the biochemical quantification of collagen, glycosaminoglycan and total protein was carried out; (2) The patellar tendon was divided into the proximal, central, and distal regions, and then the axial tensile test and stress relaxation test were performed before and after phosphate-buffered saline (PBS) or elastase treatment; (3) The dynamic constitutive model was established by the obtained mechanical data; (4) The structural relationship between elastin and collagen fibers was analyzed by two-photon microscopy and histology.Results: There was no statistical difference in mechanics between patellar tendon regions. Compared with those before elastase treatment, the low tensile modulus decreased by 75%–80%, the high tensile modulus decreased by 38%–47%, and the transition strain was prolonged after treatment. For viscoelastic behavior, the stress relaxation increased, the initial slope increased by 55%, the saturation slope increased by 44%, and the transition time increased by 25% after enzyme treatment. Elastin degradation made the collagen fibers of patellar tendon become disordered and looser, and the fiber wavelength increased significantly.Conclusion: The results of this study show that elastin plays an important role in the mechanical properties and fiber structure stability of patellar tendon, which supplements the structure-function relationship information of patellar tendon. The established constitutive model is of great significance to the prediction, repair and replacement of patellar tendon injury. In addition, human patellar tendon has a higher elastin content, so the results of this study can provide supporting information on the natural properties of tendon elastin degradation and guide the development of artificial patellar tendon biomaterials
The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator
Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation.We have previously identified the central pattern generator (CPG) forXenopustadpole swimming that involves antiphase oscillations of activitybetween the left and right sides. Here we analyze the cellular basis for spontaneous left–right motor synchrony characterized by simul-taneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and theyinstantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show thatonly neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the sameneural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does inswimming. During synchrony, the time window between phasic excitation and inhibition is 7.91 ms, shorter than that in swimming (412.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in theleft and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the sameneural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuitreconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dINsynaptic/conduction delay can improve the stability of synchrony.Publisher PDFPeer reviewe
Jacobi\u27s triple product identity and theta function identities
As a unified approach, Jacobi\u27s triple product identity
will be utilized to derive theta function formulae due to
Baruah-Berndt (2007), identities of Rogers--Ramanujan
functions and modular equations due to Ramanujan
- …