Clearwater: Extensible, Flexible, Modular Code Generation

Abstract

International audienceDistributed applications typically interact with a number of heterogeneous and autonomous components that evolve independently. Methodical development of such applications can benefit from approaches based on domain-specific languages (DSLs). However, the evolution and customization of heterogeneous components introduces significant challenges to accommodating the syntax and semantics of a DSL in addition to the heterogeneous platforms on which they must run. In this paper, we address the challenge of implementing code generators for two such DSLs that are flexible (resilient to changes in generators or input formats), extensible (able to support multiple output targets and multiple input variants), and modular (generated code can be rewritten). Our approach, Clearwater, leverages XML and XSLT standards: XML supports extensibility and mutability for inprogress specification formats, and XSLT provides flexibility and extensibility for multiple target languages. Modularity arises from using XML meta-tags in the code generator itself, which supports controlled addition, subtraction, or replacement to the generated code via XML-weaving. We discuss the use of our approach and show its advantages in two non-trivial code generators: the Infopipe Stub Generator (ISG) to support distributed flow applications, and the Automated Composable Code Translator to support automated distributed application deployment. As an example, the ISG accepts as input an XML description and generates output for C, C++, or Java using a number of communications platforms such as sockets and publish-subscribe

    Similar works