
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

6-2002

Implementing Infopipes: The SIP/XIP Experiment
Calton Pu

Galen Swint
Georgia Institute of Technology - Main Campus

Charles Consel

Younggyun Koh
Georgia Institute of Technology - Main Campus

Ling Liu
Georgia Institute of Technology - Main Campus

See next page for additional authors

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

Part of the Software Engineering Commons

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Calton Pu, Galen Swint, Charles Consel, Younggyun Koh, Ling Liu, Koichi Moriyama, Jonathan Walpole, Wenchang Yan,
"Implementing Infopipes: The SIP/XIP Experiment," Georgia Institute of Technology Technical Report GIT-CC-02-31, June 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37765438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/40
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


Authors
Calton Pu, Galen Swint, Charles Consel, Younggyun Koh, Ling Liu, Koichi Moriyama, Jonathan Walpole, and
Wenchang Yan

This technical report is available at PDXScholar: https://pdxscholar.library.pdx.edu/compsci_fac/40

https://pdxscholar.library.pdx.edu/compsci_fac/40?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages


Implementing Infopipes: The SIP/XIP Experiment 

Calton Pu1, Galen Swint1, Charles Consel2, Younggyun Koh1, Ling Liu1, Koichi Moriyama3,

Jonathan Walpole4, Wenchang Yan1

Abstract

We describe an implementation of the Infopipe abstraction for information flow applications. We have im-

plemented software tools that translate the SIP/XIP variant of Infopipe specification into executable code. 

These tools are evaluated through the rewriting of two realistic applications using Infopipes: a multimedia

streaming program and a web source combination application.  Measurements show that Infopipe-generated 

code has the same execution overhead as the manually written original version.  Source code of Infopipe ver-

sion is reduced by 36% to 85% compared to the original.

The main contributions of this paper are the imple-

mentation of software tools for SIP/XIP Infopipes

and an experimental evaluation.  From a top-down 

perspective, our software tools consist primarily of

a series of translators that successively creates ap-

propriate abstract machine code from the previous

higher level abstraction.  Our experiments show 

that the execution overhead of SIP/XIP-generated

code is minimal compared to a hand-written version

(on the order of a few percent), but the gains in

code simplicity are substantial (code size reduction 

between 36% and 85% of representative applica-

tions).

1 Introduction 

One of the fundamental functions of operating

systems (OS) is to provide a higher level of pro-

gramming abstraction on top of hardware to ap-

plication programmers.  More generally, an im-

portant aspect of OS research is to create and

provide increasingly higher levels of program-

ming abstraction on top of existing abstractions. 

Remote Procedure Call (RPC) [1] is a successful 

example of such abstraction creation on top of 

messages, particularly for programmers of dis-

tributed client/server applications. 

We have proposed the Infopipe concept [16, 10, 

9, 2] as a high level abstraction to support infor-

mation-flow applications.  Unlike RPC, which

has clearly defined procedural semantics, In-

fopipe can have several flavors, depending on 

the kind of application for which it is being spe-

cialized.  Examples include data streaming and

filtering [10] and multimedia streaming [2].  In 

this paper, we describe the SIP/XIP variant of 

Infopipe currently under development at Georgia

Tech, the software tools that implement

SIP/XIP, and experiments that evaluate the con-

cept as well as software tools. 

The rest of the paper is organized as follows.  Sec-

tion 2 summarizes the Infopipe abstraction.  Section 

3 outlines the implementation strategy.  Section 4 

describes the experimental evaluation results. Sec-

tion 5 summarizes related work and Section 6 con-

cludes the paper. 

2 The Infopipe Abstraction 

2.1 Background and Motivation

Remote procedure call (RPC) is a well-established

mechanism for constructing distributed systems and

applications, and a considerable amount of distrib-

1 Center for Experimental Research in Computer Systems (CERCS), Georgia Institute of Technology, Atlanta, Georgia. 

{firstname.lastname}@cc.gatech.edu

2 INRIA/LaBRI/ENSEIRB, Bordeaux, France.  {consel@labri.fr} 

3 Sony Corporation, Tokyo, Japan.  This author’s work was done during an extended visit to Georgia Tech. 

4 OGI School of Science & Engineering, OHSU, Portland, Oregon.  {walpole@cse.ogi.edu}

1



uted systems research has centered on it. RPC is

based on the procedure call abstraction which 

raises the level of abstraction for distributed sys-

tems programming beyond raw message passing 

and naturally supports a request-response style

of interaction that is common in many applica-

tions. The widespread use and acceptance of

RPC has led to the development of higher-level 

architectural models for distributed system con-

struction. For example, it is a cornerstone for 

models such as client/server, DCOM, and

CORBA. The client/server model is widely con-

sidered to be a good choice for building practical 

distributed applications, particularly those using

computation or backend database services.

On the other hand, while these models have 

proven successful in the construction of many

distributed systems, RPC and message passing 

libraries offer limited support for information-

driven applications.  One example is bulk data

transfers [6].  Another example is when informa-

tion flows are subject to real-world timing con-

straints certain elements of distribution transpar-

ency  an often-cited advantage of RPC  can 

cause more problems than they solve. For exam-

ple, restrictions on the available bandwidth or la-

tency over a network link between two compo-

nents of a media-streaming application are a

serious concern and should not be hidden by the

programming abstraction. Similarly, the reliabil-

ity and security-related characteristics of a con-

nection may be significant to applications that

are streaming critical or sensitive information.

Several important emerging classes of distrib-

uted applications are inherently information-

driven. Instead of occasionally dispatching re-

mote computations or using remote services, 

such information-driven systems tend to transfer 

and process streams of information continuously

(e.g., Continual Queries [11, 12]).  Member of

this class range from applications that primarily

transfer information over the wires such as digi-

tal libraries, teleconferencing and video on de-

mand, to applications that require information-

intensive processing and manipulation, such as

distributed multimedia, Web search and cache

engines. Other applications such as electronic 

commerce combine heavy-duty information

processing (e.g., during the discovery and shop-

ping phase, querying a large amount of data 

from a variety of data sources [18]) with occasional 

remote computation (e.g., buying and updating 

credit card accounts as well as inventory data-

bases).

We argue that an appropriate programming para-

digm for information-driven applications should 

embrace information flow as a core abstraction and

offer the following advantages over RPC.  First, 

data parallelism among flows should be naturally

supported.  Second, the specification and preserva-

tion of QoS properties should be included. And

third, the implementation should scale with the in-

creasing size, complexity and heterogeneity of in-

formation-driven applications.  We emphasize that 

such a new abstraction offers an alternative that 

complements RPC, not to replace it.  In cli-

ent/server applications, RPC is clearly the natural

solution.

2.2 The Infopipe Abstraction 

We have proposed the Infopipe concept [16, 10, 9,

2] as an abstraction for capturing and reasoning 

about information flow in information-driven appli-

cations. Intuitively, an Infopipe is the information

dual of an RPC. Like RPCs, Infopipes raise the 

level of abstraction for distributed systems pro-

gramming and offer certain kinds of distribution

transparency. Beyond RPCs, Infopipe is specified 

by the syntax, semantics, and quality of service

(QoS) properties.  Examples of QoS properties in-

clude the quality, consistency, reliability, security

and timeliness of the information flowing through-

Infopipes.  In this paper, we only include enough 

description of Infopipes to make this paper self-

contained.  Many important Infopipe features such

as QoS properties and restructuring of Infopipe 

(topics of active research) are beyond the scope of 

this paper.

A simple Infopipe has two ends – a consumer (in-

put) end and a producer (output) end – and imple-

ments a unidirectional information flow from a sin-

gle producer to a single consumer. The processing, 

buffering, and filtering of information happen in the 

middle of the Infopipe, between the two ends.  As 

mentioned before, an Infopipe links information

producers to consumers.  The information producer

exports an explicitly defined information flow, 

which goes to the input end of the Infopipe.  After 

appropriate transportation, storage, and processing,

2



the information flows through the output end to

the information consumer.

Infopipe is a language and system independent 

mechanism to process information in a distrib-

uted system. This is done on purpose since one 

of the main reasons for RPC’s success among

practical imperative programming languages is 

their universal adoption of the procedure call ab-

straction. As a consequence, stub generators are 

able to hide the tedious details of marshalling

and unmarshalling parameters for all practical

languages.  There are two additional sources of

problems in the implementation of stub genera-

tors: (1) the heterogeneity of operating systems

and hardware, and (2) the translation between 

the language level procedure call abstraction and 

the underlying system level message-based im-

plementation. The eventual definition of an In-

terface Description Language (IDL) solved both 

problems, by encapsulating the translation func-

tions in a portable IDL compiler.

Our approach to making Infopipes language and

system independent parallels that used in RPC. 

We define a generic interface for Infopipe ma-

nipulation, and use the equivalent of IDL and 

stub generators to hide the technical difficulties 

of marshalling and unmarshalling data and ma-

nipulating system-specific mechanisms for QoS

property enforcement. By adopting this approach 

we shield the application developer from the

complexity of heterogeneous operating systems

and hardware and the translation from language-

level abstractions to underlying message-based

implementations.

2.3 Infopipe Specification Language 

The specification of Infopipe is divided into 

three components: syntax, semantics, and QoS 

properties.  The software that wraps the first two

components corresponds directly to RPC stub

generators, since an Infopipe Specification Lan-

guage compiler can generate the plumbing code 

so Infopipe programmers don’t have to write 

code to manipulate the explicit representation 

and description of an Infopipe.

Between its consumer and producer ends, an In-

fopipe is a one-way mapping that transforms in-

formation units from its input domain to the out-

put range.  Probably it is not surprising to the 

reader that there are many concrete examples of ex-

isting information flow software.  A familiar exam-

ple is the Unix filter programs.  Combining filters

we have a Unix pipeline, which is a precursor of the 

Infopipe programming style.  Another concrete ex-

ample of information flow manipulation language 

is SQL in relational databases.

In this paper, we use the SIP (for Specifying In-

foPipes) variant of Infopipe Specification Lan-

guages.  SIP is a domain-specific language being 

developed at Georgia Institute of Technology to

support information flow applications.  SIP is a ge-

neric Infopipe specification language that supports 

a number of communications abstract machines, in-

cluding the ECho publish/subscribe messaging

middleware and the common TCP socket/RPC in-

vocations.  Since our focus is on the implementa-

tion and evaluation, we omit the language defini-

tion and include examples in the Appendix as

illustration.  From the system point of view, SIP is

similar to other domain-specific languages such as 

Devil [14] for writing device drivers. SIP encapsu-

lates domain knowledge (in this case, distributed 

information flow applications and communications

mechanisms) so the applications written in SIP can 

be more concise and portable. 

Composition of Infopipes is an active area of re-

search and space constraints limit the number of 

experiments in this paper.  In Section 4.4, we out-

line an experiment with a simple serial composition

of Infopipes in an application that combines infor-

mation from several web sources. This small ex-

periment only illustrates the potential interesting 

problems in the area of Infopipe composition.

3 Implementation Outline

3.1 Implementation Strategy

Our design of software tools to translate SIP into

executable code consists of two steps.  First, SIP is 

translated into an intermediate representation, 

called XML Infopipe Specification Language 

(XIP). Then, XIP is translated into executable code 

using one of the communications abstraction ma-

chines.  There are three main reasons for this inter-

mediate representation and translation steps. 

First, we are planning for several variants of In-

fopipe Specification Language, of which SIP is just 

one instance.  This is an area of active research,

3



particularly from the domain specific language 

point of view.  Each variant may also evolve

over time, as new functionality is added. Instead

of trying to create and maintain different soft-

ware tools for each variant of Infopipe Specifica-

tion Language, we decided to create a standard

extensible intermediate representation based on

XML (XIP).  This way, the second step (the ac-

tual code generation) can be developed in paral-

lel to the design and evolution of the variants of 

Infopipe Specification Languages. 

Second, we are planning the generation of code

for several communications abstract machines.

The experiments described below use a pub-

lish/subscribe event messaging mechanism

called ECho. A standard format such as XIP 

simplifies the addition of new abstract machines

for the code generator.  We also have imple-

mented a prototype version that translates XIP

into RPC and sockets, which have lower over-

head for message exchanges.

Third, we will be attaching a variety of metadata

to the data stream being carried by Infopipes. 

This metadata includes data provenance annota-

tions (e.g., when and where the information was

generated, and how it was processed) and other 

data processing instructions (e.g., filtering algo-

rithms that understand the semantics of this par-

ticular data stream).  Further discussion of the 

metadata issue is beyond the scope of this paper,

but it is an important reason for the XIP standard

format.

Currently, the first step of SIP translation (into 

XIP) is done by hand.  This is primarily due to 

the fast evolution of SIP. The second step (from

XIP into executable) is described in the follow-

ing section. 

3.2 Code Generation Process 

We skip the details of XIP in this paper, since it

is an intermediate representation invisible from

the programmer’s point of view. Furthermore,

XIP is used only during code generation and

therefore contributes little to the run-time over-

head, the other major concern of this paper.  At 

the risk of oversimplification, XIP can be de-

scribed as a union of all variants of Infopipe

Specification Languages.  By union we mean

combined functionality from these variants, not 

syntax. We chose XML due to its extensibility, ca-

pable of handling all the three aspects of an In-

fopipe (syntax, semantics, and QoS). Even though

XML was originally designed as a data interchange 

format, not an intermediate representation, it has 

worked very well so far.

The translation of XIP into executable code is ac-

complished through a series of transformations on 

the XIP specification of Infopipe.  For convenience, 

we call these internal representations XIP+k, where 

k is the number of stage in the series.  The input 

files for the XIP translator are the XIP specification

of Infopipe and the abstract machine description 

(executable code templates) file. 

The main transformation from XIP to XIP+1 is 

the explicit naming of all inputs and outputs, by

using the information in the XIP file and the 

abstraction machine description.

The transformation from XIP+1 to XIP+2 is the 

flattening of composite Infopipes into elemen-

tary Infopipes (with one input and one output) 

plus the syntactic data types, data filters, and 

aspect [7] (e.g., end-to-end latency manage-

ment) templates.

From XIP+2 to XIP+3, the aspects doing work

are filled in, while the unnecessary aspects are 

removed.

From XIP+3 to XIP+4, the aspects are woven

together and the templates are used to generate 

executable code from XIP+4 and the abstrac-

tion machine description file. 

In the current implementation, we generate code for

two concrete communications abstract machines:

(1) the ECho publish/subscribe messaging facility,

and (2) the popular Unix sockets interface.  Also, 

the translation process from XIP to XIP+4 is in 

main memory for performance reasons.  The trans-

formation algorithms are designed so each stage 

can write XIP+k to disk to accommodate arbitrarily

large XIP descriptions. 

4 Experimental Evaluation

4.1 The Statistical Treatment 

Many system components are involved in the meas-

urement of software systems such as ours, with 

variations being introduced by the hardware (e.g.,

cache misses), OS kernel variations (e.g., schedul-

4



scheduling and memory management decisions), 

and network (e.g., very short temporary interfer-

ences with other nodes).  This is particularly the

situation with I/O operations such as Infopipes. 

Some operations (e.g., Infopipe initialization) 

cannot be repeated many times in a warmed

cache to reduce variance, since their normal

mode of operations is an execution without

warmed cache.

The second microbenchmark measures the over-

head of transmitting 1000 integers, repeated 10,000

times.  (As mentioned above, each test is repeated

100 times and the mean of the result compared.)

This can be seen as the normal case for bulk trans-

missions.  For the results below, we have a t-

statistic of 146.6, so even though the ECho version 

is only slightly slower than sockets (about 2% dif-

ference), the difference is statistically significant at

95% confidence interval.  Intuitively, the small dif-

ference is significant because the measurements

have been very precisely reproducible (with stan-

dard deviations that are one order of magnitude

smaller than the difference in response time.

Therefore, we took some care in our evaluation

to clarify the interpretation of measured results. 

We are using a simple statistical treatment called

two-sample t-test, where the mean of two sets of

measurement results are compared.  We assume

two independent sets of random samples, each 

consisting of independent and identically dis-

tributed random variables.  Our null hypothesis

is that the means from the two samples are equal,

i.e., the difference between the two sets of meas-

urements is statistically not meaningful.  To de-

cide whether to accept or reject the null hypothe-

sis, we put the t-statistic (derived from the two 

samples) into a student-t distribution and adopt

95% confidence interval in the test.  For most of

the experiments, the sample size was 100 (the 

same experiment was run 100 times).

1000 Integers Mean Time Std. Dev. 

ECho/Infopipe 3.46 sec 0.004 sec

TCP sockets 3.39 sec 0.003 sec

In these microbenchmarks, an obvious experiment

would be the comparison between the Infopipe-

generated code using ECho and manually written 

ECho code, or a similar comparison using TCP 

sockets.  Since the code and the measured results 

are the same, we omit them here.  See the next Sec-

tion for similar results. 4.2 Microbenchmarks

4.3 Data Streaming Experiment The first set of experiments consists of micro-

benchmarks to evaluate the overhead of Infopipe 

basic functions.  The hardware used in the ex-

periments is a pair of Dell dual-CPU worksta-

tions with Pentium III (800MHz, 512MB,

256KB L1 cache) running Linux 2.4.9-smp.  The 

two machines are connected through a lightly

loaded 100Mb Ethernet and sharing the same file

system.

Our first system level experiment is an evaluation 

of Infopipes for a multimedia streaming applica-

tion.  This application is representative of many dis-

tributed information flow applications where bulk

data streaming happens.  Our application has real-

time requirements (unprocessed bits drop on the

floor) that are implemented by quality of service 

(QoS) support.  Although QoS is an integral part of

Infopipe research, it is a complex topic.  We will 

report on Infopipe support for QoS in a paper dedi-

cated to that topic.  In this paper, we focus on the 

effectiveness of Infopipe as a high level abstraction

for information flow applications. 

The first microbenchmark measures the over-

head of transmitting one single integer, repeated

100,000 times.  (As mentioned above, each test

is repeated 100 times and the mean of the result 

compared.)  This can be seen as the worst case 

scenario that maximizes the transmission over-

head.  For the results below, we see that obvi-

ously sockets carry lower overhead than ECho. 

The evaluation consists of two parts. The first part

is a comparison of measured overhead of two ver-

sions of the application: the original version was 

hand-written and the Infopipe version is the same

application written using SIP/XIP Infopipes. This is 

a refinement of the microbenchmarks in Section 

4.1, and shows the effectiveness of our implementa-

Single Integer Mean Time Std. Dev. 

ECho/Infopipe 2.0 sec 0.015 sec

TCP socket 0.12 sec 0.003 sec

5



tion in a realistic scenario.    The second part is a 

comparison of the source code length between

the original version and the Infopipe version. 

This is an evaluation of the effectiveness of the 

Infopipe abstraction for the programming of in-

formation flow applications. 

The multimedia streaming application is a me-

dium-sized demonstration program being devel-

oped for DARPA’s PCES program.  The pro-

gram includes contributions from several

universities and is integrated by BBN.  The cur-

rent version of the program (successfully inte-

grated and demonstrated in April 2002) gathers

video input from several sources, processes 

them, and redistributes the video streams to sev-

eral destinations including video displays and 

automatic target recognition programs.  Al-

though the program contains significant techni-

cal innovation such as quality of service control, 

in this experiment we focus on the effect of In-

fopipe abstraction in terms of performance over-

head and code size. 

The experiment consists of taking the original

application code and rewriting it using Infopipes 

for information flow processing.  Both the origi-

nal version and the Infopipe version use the

same publish/subscribe communications mid-

dleware called ECho [5].  The video streams are 

320X240 pixels, 24-bit color depth raw images

in the Unix Portable Pixmap (PPM) format.

The measurements were conducted on a Dell

laptop (700 MHz Pentium III, 256 MB memory)

running Linux 2.4.2.  The following table shows

the measured overhead of ECho channel initiali-

zation time for both versions.  We ran the pro-

gram 100 times with a cold start initialization 

(new process).  The statistical tests show a sig-

nificant difference for the initialization time (t-

statistic = -8.96).  The small difference is due to

minor differences in the code generated. 

Initialization Mean Time Std. Dev. 

Original 26.0 ms 0.4 ms

Infopipe 28.2 ms 2.4 ms

We also measured the time it takes to transfer a

frame (the steady state).  The table below shows

the measured overhead as mean over 100 runs.

The statistical analysis shows no significant differ-

ence for the steady state performance of the two 

versions (t-statistic = -1.85). 

Frame Trans. Mean Tune Std. Dev. 

Original 320.4 ms 4.1 ms

Infopipe 319.4 ms 3.5 ms

For the quantitative source code evaluation, we re-

stricted our attention to the 1182 lines (not includ-

ing blanks and comments) in 5 source files that re-

fer to video streams, at both sender and receiver.

The application consists of approximately 15,000 

lines of code, using many significant and relatively

large middleware packages such as ECho (pub-

lish/subscribe messaging middleware).  From these 

files, 441 lines are closely related to ECho. The

application was rewritten using Infopipes (SIP) and

hand-translated into XIP.  The source code for this 

experiment is included in Appendix 7.1. 

While the code savings are potentially better with 

SIP, a domain-specific language designed to sup-

port information flow, we decided to compare pri-

marily with XIP.  Although XIP is more verbose, it

is also more “general-purpose” in its coverage of 

many flavors of Infopipe specification languages.

Consequently, it is more directly comparable with

the original hand-written code.  This comparison

also becomes  independent of specific Infopipe 

Specification Language syntax.  Comparing the 

XIP version to the original version, 12 lines were

added, 171 lines were removed, and 37 lines were 

changed.  The following table summarizes the

change process from the original version to the In-

fopipe version.  The result is the elimination of 

about 36% of the original source code related to in-

formation flow (in lines of code – loc). 

Infopipe-

Related

Code

Added

Code

Removed

Code

Modified

441 loc 12 loc 171 loc 37 loc

4.4 Web Source Composition Experi-
ment

Our second system level experiment is an evalua-

tion of Infopipes for a web information processing 

application.  It takes an address, fetches a map for

6



that address, and filters the map for display on a 

personal digital assistant (PDA) with limited

resolution, capability (e.g., grayscale only), and

network bandwidth.  This is an application that

could be written using an “agent” style of pro-

gramming.  The control passes from site to site,

gathering information or processing and filtering

the information.  Eventually it produces a useful

result.

Instead of using a control-driven model such as

agents, we model the application as an informa-

tion flow, which is implemented using Infopipes.

Although we no longer have “agents” visiting 

different sites, the information flow goes through

the appropriate sites and the information is aug-

mented, processed, filtered, and transformed

along the way.  The result is useful information

at the end of the composite Infopipe. 

The concrete implementation of the application 

has four main components.  At the beginning is a 

GUI with a wrapper to translate its output into an 

XML format.  The GUI collects the user input

(address) and through the wrapper sends it to the

first stage of information pipeline, GetMapURL, 

which sends the address to MapQuest for trans-

lation. MapQuest sends back the URL of a color 

map.  The URL is passed to the second stage of

information pipeline, GetMapImage, which

fetches the map (also from MapQuest in this par-

ticular case).  Once GetMapImage receives the

map, it passes the data to the third stage of the 

information pipeline, ImageConverter, which fil-

ters the image to an appropriate grayscale image

of appropriate resolution for the PDA. At the

end, ImageConverter sends the results back to 

the GUI running on the PDA, which then dis-

plays the grayscale image.

We also divided this experiment into two parts. 

Since there is no sustained data transfer, the first 

part (execution overhead) was done on the la-

tency of application execution. We used the

same desktops described in Section 4.2 with the

same configuration (single machine). The GUI

was run as a PalmOS application on the PalmOS

Emulator 3.0a7. 

For this kind of applications, the latency meas-

urements are usually dominated by network ac-

cess times.  In addition, since there are external 

accesses (e.g., twice to MapQuest.com), it is dif-

ficult to reproduce measured results.  Despite the 

large variances, the Mean measured latencies (over 

10 executions) of the two versions show no statisti-

cally significant difference. 

Latency Mean Std. Dev.

Hand-written 6.18 sec 0.12 sec 

Infopipe 6.22 sec 0.15 sec 

The second part of the experiment, quantitative

code comparison, showed a more dramatic code re-

duction.  This is due to the repeated I/O manage-

ment code in each stage of information pipeline 

plus data, socket, and XML handling code, when

XML data streams must be parsed and interpreted.

By generating these “bureaucratic” code segments

automatically, the Infopipe version is able to re-

duces the code count to about 15% of the hand-

written code size. 

Web Compos. Hand-written Infopipe

GetMapURL 95 loc 19 loc

GetMapImage 104 loc 28 loc

ImageConverter 121 loc 43 loc

House-keeping 507 loc 26 loc

Total 827 loc 116 loc

5 Related Work

Remote Procedure Call (RPC) [1] is the basic

abstraction for client/server software.  By raising 

the level of abstraction, RPC facilitated the

programming of distributed client/server applica-

tions.  For example, RPC automates the marshalling

and unmarshalling of procedure parameters, a

tedious and maintenance-heavy process. Despite its

usefulness, RPC provides limited support for infor-

mation flow applications such as data streaming,

digital libraries, and electronic commerce.  To 

remedy these problems, extensions of RPC such as

Remote Pipes [6] were proposed to support bulk

data transfers and sending of incremental results.

Instead of trying to extend further RPC-style ab-

stractions, which provide convenient building

blocks for the programming of distributed compu-

tations, Infopipes can be seen as a complementary

7



abstraction to RPC and its derivatives.  For 

distributed data streaming, for example,

Infopipes provide good abstractions for 

distributed information flow with “local” 

computations (as filters within Infopipes).

6 Conclusion 

In this paper, we briefly motivate and summarize

the concept of Infopipe [16, 10, 9, 2] to support 

distributed information flow applications. Then,

we describe the implementation of the SIP vari-

ant of Infopipe Specification Languages.  The 

implementation translates SIP into an XML-

based intermediate representation called XIP, 

which is then stepwise transformed into executa-

ble code. 

We used one set of microbenchmarks and two 

realistic applications for an experimental evalua-

tion of the SIP/XIP software tools. The meas-

urement results show that the run-time overhead 

of generated Infopipe is comparable to the 

manually written code.  For example, statisti-

cally there is no difference for steady state data 

transfers, with only 7% additional overhead for 

Infopipe initialization.

The evaluation of the source code for these ex-

periments shows a significant reduction in num-

ber of lines of code.  The Infopipe code is 36%

smaller than the original code for the multimedia

streaming application and reduced to only 15%

of the original code for the web source combina-

tion application.  The declarative nature of 

SIP/XIP also makes it easier to write and main-

tain the Infopipe version of these applications

(see Appendix Section 7 for a direct compari-

son).

These experiments show the promise of the In-

fopipe approach and the advantages of our

SIP/XIP implementation strategy.  We are mov-

ing forward with the addition of QoS support 

and the application of program specialization 

techniques [13, 15, 17] to improve the perform-

ance of generated code.

Funding Acknowledgements 

This work was done as part of the Infosphere 

project, funded by DARPA through the Informa-

tion Technology Expeditions, Ubiquitous Com-

puting, Quorum, and PCES programs. The re-

search was also partially funded by NSF's CISE di-

rectorate, through the ANIR and CCR divisions.  In 

addition, the research was partially funded by Intel.

References

1. A. Birrell and B. Nelson, “Implementing Re-

mote Procedure Calls”, in ACM Transactions 

on Computer Systems, Vol. 2, No. 1, February

1984, Pages 39-59.  Also appeared in Proceed-

ings of SOSP’83. 

2. A. Black, J. Huang, R. Koster, J. Walpole, and

C. Pu, “Infopipes: an Abstraction for Multime-

dia Streaming”, in ACM Multimedia Systems

Journal.  To appear in 2002. 

3. G. Box, S. Hunter, and W. Hunter, “Statistics 

for Experimenters: An Introduction to Design,

Data Analysis, and Model Building”, John 

Wiley and Sons, 1978. 

4. D. Buttler, L. Liu, and C. Pu, ``A Fully Auto-

mated Object Extraction System for the World

Wide Web'', to appear in the Proceedings of the

2001 International Conference on Distributed 
Computing Systems (ICDCS'01), May 2001, 

Phoenix, Arizona. 

5. G. Eisenhauer, F. Bustamante and K. Schwan,

“Event Services in High Performance Sys-

tems”, Cluster Computing: The Journal of

Networks, Software Tools, and Applications,

Vol. 4, Num. 3, July 2001, pp 243-252 

6. D. Gifford and N. Glasser, “Remote Pipes and 

Procedures for Efficient Distributed Communi-

cation”, in ACM Transactions on Computer 

Systems, Vol. 6, No. 3, August 1988, Pages

258-283.

7. G. Kiczales, J. Lamping, A. Mendhekar, C.

Maeda, C. Lopes, J. Loingtier, J. Irwin, “As-

pect-Oriented Programming”. Springer-Verlag

LNCS Vol. 1241. June 1997. Also in the Pro-

ceedings of ECOOP, Finland, 1997.

8. R. Koster, A. Black, J. Huang, J. Walpole and 

C. Pu, “Thread Transparency in Information

Flow Middleware”.  In the Proceedings of 

Middleware 2001 - IFIP/ACM International 

Conference on Distributed Systems Platforms,

Heidelberg, Germany, November, 2001. 

9. R. Koster, A. Black, J. Huang, J. Walpole and 

C. Pu,  “Infopipes for Composing Distributed 

Information Flows”.  In the Proceedings of the 

8



9

ACM Multimedia Workshop on Multimedia 

Middleware, Ottawa, Canada, October 2001.

10. L. Liu, C. Pu, K. Schwan and J. Walpole, 

"InfoFilter: Supporting Quality of Service 

for Fresh Information Delivery", New Gen-

eration Computing Journal (Ohmsha, Ltd. 

and Springer-Verlag), Special issue on Ad-

vanced Multimedia Content Processing, Vol. 

18, No. 4, August 2000. 

11. L. Liu, C. Pu, W. Tang, and W. Han, "Con-

quer: A Continual Query System for Update 

Monitoring in the WWW", International

Journal of Computer Systems, Science and 

Engineering. To appear in the Special issue 

on Web Semantics, 1999. 

12. L. Liu, C. Pu, and W. Tang, "Continual Que-

ries for Internet Scale Event-Driven Infor-

mation Delivery", IEEE Transactions on 

Knowledge and Data Engineering, Special 

issue on Web Technologies, Vol. 11, No. 4, 

July/August 1999.  

13. D. McNamee, J. Walpole, C. Pu, C. Cowan, 

C. Krasic, A. Goel, P. Wagle, C. Consel, G. 

Muller, and R. Marlet, "Specialization Tools 

and Techniques for Systematic Optimization 

of System Software", ACM Transactions on 

Computer Systems, Vol. 19, No. 2, May 

2001, pp 217-251.

14. F. Merillon, L. Reveillere, C. Consel, R. 

Marlet, G. Muller, “Devil: An IDL for 

Hardware Programming”, in Proceedings of 

the 2000 Conference on Operating System 

Design and Implementation (OSDI), pp 17-30, 

San Diego, October 2000. 

15. G. Muller, R. Marlet, E.N. Volanschi, C. Con-

sel, C. Pu and A. Goel, "Fast, Optimized Sun 

RPC using Automatic Program Specialization", 

Proceedings of the 1998 International Confer-

ence on Distributed Computing Systems, Am-

sterdam, May 1998.  

16. C. Pu, K. Schwan, and J. Walpole, “Infosphere 

Project: System Support for Information Flow 

Applications”, in ACM SIGMOD Record, Vol-

ume 30, Number 1, pp 25-34, (March 2001). 

17. C. Pu, T. Autrey, A. Black, C. Consel, C. 

Cowan, J. Inouye, L. Kethana, J. Walpole and 

K. Zhang, "Optimistic Incremental Specializa-

tion: Streamlining a Commercial Operating 

System", Proceedings of the Fifteenth Sympo-

sium on Operating Systems Principles 

(SOSP’95), Colorado, December 1995. 

18. D. Steere, A. Baptista, D. McNamee, C. Pu, 

and J. Walpole, "Research Challenges in Envi-

ronmental Observation and Forecasting Sys-

tems", Proceedings of the 6th Annual Interna-

tional Conference on Mobile Computing and 

Networking (MobiCom'00), Boston, August 

2000.

19. D. Steere, A. Goel, J. Gruenberg, D. McNamee, 

C. Pu, and J. Walpole, "A Feedback-Driven 

Proportion Allocator for Real-Rate Schedul-

ing", Proceedings of the Third Symposium on 

Operating System Design and Implementation 

(OSDI'99), New Orleans, February 1999. 

7 Appendices 

In the source code attached below, we use the 

normal font (between sizes 11 and 9) to show ar-

eas of interest.  When code is irrelevant for our 

comparison purposes, we reduce it to an illustra-

tive size (sizes 4 or smaller) to show that the 

code is there, but it is not part of our compari-

son.

7.1 SIP Example – Multi-UAV Appli-
cation

The first step in integrating an infopipe into an 

application is to write the SIP specification for it. 

This involves creating declarations for data 

types, filters, and pipes. Data types are built out 

of primitive types which roughly mirror types 

available in C. Eventual plans are to mirror the 

types available as part of the SOAP specification. 

Our contribution to the Multi-UAV demo involves 

generating the communication code from the send-

ing process to the player, which displays the images 

as a movie. In this case, we have two infopipes 

which are composed together. The first infopipe 

makes the data available on the network, and the 

second infopipe delivers the data to the player.  The 

data type for the exchange is also specified in SIP.  

The application relies on several filters to process 

the information before transmission to reduce net-

work load. These can be defined by name and ref-

erenced in the specification of an infopipe. 

The SIP version of the Multi-UAV demo: 



10

//320x240 color image 
add type Raw_data_2C
( tag:integer, 
  ppm1:byte, 
  ppm2:byte, 
  size:integer, 
  width:integer, 
  height:integer, 
  buffer:array[230400] of byte);

//320x240 grey scale image 
add type Raw_data_2G
( tag:integer, 
  ppm1:byte, 
  ppm2:byte, 
  size:integer, 
  width:integer, 
  height:integer, 
  buffer:array[76800] of byte); 

add filter Fdata2G 
    input Raw_data 
    output Raw_data1G 
    source "../strlt/greyImage.ecl"; 

add ipipe Source 
    input none //no input since we are
               //source - a half-pipe
               //really 
    output Raw_data; //output data
                     //type defined
                     //above 

compose Player2GPipe 
        input Source //get our input
                     //from the pipe
                     //"Source" 
        output none  // make this op-
                     // tional if none 
        withfilter Fdata2G; 

From the SIP code, XIP code is produced and in 

turn executable code is generated from the XIP 

code.  Generation of XIP is a straightforward 

conversion from SIP. The XML form adds no 

new information to the specification.  

The XIP code of the Multi-UAV demo: 

<InfopipeSpec name="Player2G"> 
<dataDef name="Raw_data_2C" > 
  <arg type="integer" name="tag"/> 
  <arg type="char" name="ppm1"/> 
  <arg type="char" name="ppm2"/> 
  <arg type="integer" name="size"/> 
  <arg type="integer" name="width"/> 
  <arg type="integer" name="height"/>

  <arg type="integer" name="maxval"/> 
  <arg type="char" size="size"
                   name="buff"/> 
</dataDef>

<dataDef name="Raw_data_2G" > 
  <arg type="integer" name="tag"/> 
  <arg type="char" name="ppm1"/> 
  <arg type="char" name="ppm2"/> 
  <arg type="integer" name="size"/> 
  <arg type="integer" name="width"/> 
  <arg type="integer" name="height"/> 
  <arg type="integer" name="maxval"/> 
 <arg type="char" size="size"

                   name="buff"/> 
</dataDef>

<pipe name="Source"
      inType="CAPPED"
      outType="Raw_data_2C"> 
</pipe>
<pipe name="Player2CPipe"
      inType="CAPPED" outType="CAPPED"> 
  <connections> 
    <join pipe="Source" /> 
    <filter name="FData1G"
       location="greyImage.ecl"/>
  </connections> 
</pipe>
</InfopipeSpec>

Instead of showing the C code generated from XIP, 

we include here the original version (also written in 

C) of the Multi-UAV application program. It is 

substantially similar to the one generated by XIP 

(as demonstrated in measured overhead in Section 

4.3) and it shows the difference in code quantity 

and quality as discussed in that section.  As can 

been seen below, there is a lot of code devoted to 

creating connections and initializing the environ-

ment. The areas of large text indicate code that is 

replaced by the generated code. 

/* avs_raw.h */ 
#ifndef RAW_ECHO_INCLUDED 
#define RAW_ECHO_INCLUDED 

#include <io.h> 
#include <common.h> 

typedef struct { 
  int tag; 
  char ppm1; 
  char ppm2; 
  int size; 
  int width; 
  int height; 
  char *buff; 
} Raw_data, *Raw_data_ptr; 

extern IOField Raw_data_fld[]; 

/* 1 - 640 * 480 ***********/ 



11

#define AVSIMAGE1C  921600
/* 640 * 480 - color */ 

typedef struct { 
  int tag; 
  char ppm1; 
  char ppm2; 
  int size; 
  int width; 
  int height; 
  int maxval; 
  char buff[AVSIMAGE1C]; 
} Raw_data1C, *Raw_data1C_ptr; 

extern IOField Raw_data1C_fld[]; 

#define AVSIMAGE1G  307200
 /* 640 * 480 - grey  */ 

typedef struct { 
  int tag; 
  char ppm1; 
  char ppm2; 
  int size; 
  int width; 
  int height; 
  int maxval; 
  char buff[AVSIMAGE1G]; 
} Raw_data1G, *Raw_data1G_ptr; 

extern IOField Raw_data1G_fld[]; 

#define AVSIMAGE1DC    1843200  /* 640 * 480 * 2 - color */ 

typedef struct { 
  int tag; 
  char ppm1; 
  char ppm2; 
  int size; 
  int width; 
  int height; 
  int maxval; 
  char buff[AVSIMAGE1DC]; 
} Raw_data1DC, *Raw_data1DC_ptr; 

extern IOField Raw_data1DC_fld[]; 

#define AVSIMAGE1DG     614400  /* 640 * 480 * 2 - grey  */ 

typedef struct { 
  int tag; 
  char ppm1; 
  char ppm2; 
  int size; 
  int width; 
  int height; 
  int maxval; 
  char buff[AVSIMAGE1DG]; 
} Raw_data1DG, *Raw_data1DG_ptr; 

xtern IOField Raw_data1DG_fld[]; 

/* Some other data format */ 

typedef struct { 
  int tag; 
  char ppm1; 
  char ppm2; 
  int size; 
  int width; 
  int height; 
  int maxval; 
  char buff[AVSIMAGE3G]; 
} Raw_data3G, *Raw_data3G_ptr; 

extern IOField Raw_data3G_fld[]; 
#

typedef struct { 
  int tag; 
  char ppm1; 
  char ppm2; 
  int size; 
  int width; 
  int height; 
  int maxval; 
  char buff[AVSIMAGE3DG]; 
} Raw_data3DG, *Raw_data3DG_ptr; 

extern IOField Raw_data3DG_fld[]; 

#define AVSIMAGE4DC    1843200  /* 80 *  60 * 2 - color */ 

typedef struct { 
  int tag; 
  char ppm1; 
  char ppm2; 
  int size; 
  int width; 
  int height; 
  int maxval; 
  char buff[AVSIMAGE4DC]; 
} Raw_data4DC, *Raw_data4DC_ptr; 

extern IOField Raw_data4DC_fld[]; 

#endif /* RAW_ECHO_INCLUDED */

/*avs_raw.c */ 
#if HAVE_CONFIG_H 
#  include <config.h> 
#endif

#include <stdio.h> 
#IOField Raw_data1DG_fld[] = { 
  {"tag","integer",sizeof(int),IOOffset(Raw_data1DG_ptr,tag)}, 
  {"ppm1","char",sizeof(char),IOOffset(Raw_data1DG_ptr,ppm1)}, 
  {"ppm2","char",sizeof(char),IOOffset(Raw_data1DG_ptr,ppm2)}, 
  {"size","integer",sizeof(int),IOOffset(Raw_data1DG_ptr,size)}, 
  {"width","integer",sizeof(int),IOOffset(Raw_data1DG_ptr,width)}, 
  {"height","integer",sizeof(int),IOOffset(Raw_data1DG_pt
  {"buff", IOArrayDecl(char,AVSIMAGE1DG), sizeof(char), 

r,height)},

   IOOffset(Raw_data1DG_ptr,buff[0])}, 
  {NULL,NULL}, 
};

/* 2 - 320 * 240 ***********/ 

IOField Raw_data2C_fld[] = { 
  {"tag","integer",sizeof(int),IOOffset( 
    Raw_data2C_ptr,tag)}, 
  {"ppm1","char",sizeof(char),IOOffset( 
    Raw_data2C_ptr,ppm1)}, 
  {"ppm2","char",sizeof(char),IOOffset( 
    Raw_data2C_ptr,ppm2)}, 

{"size","integer",sizeof(int),IOOffset(
    Raw_data2C_ptr,size)}, 

{"width","integer",sizeof(int),IOOffset
   (Raw_data2C_ptr,width)}, 
  {"height","integer",sizeof(int), 
    IOOffset(Raw_data2C_ptr,height)}, 
  {"buff", IOArrayDecl(char,AVSIMAGE2C), 
    sizeof(char), 
    IOOffset(Raw_data2C_ptr,buff[0])}, 
  {NULL,NULL}, 
};

IOField Raw_data2G_fld[] = { 
  {"tag","integer",sizeof(int),IOOffset( 
    Raw_data2G_ptr,tag)}, 
  {"ppm1","char",sizeof(char),IOOffset( 
    Raw_data2G_ptr,ppm1)}, 
  {"ppm2","char",sizeof(char),IOOffset( 
    Raw_data2G_ptr,ppm2)}, 

{"size","integer",sizeof(int),IOOffset(
    Raw_data2G_ptr,size)}, 

{"width","integer",sizeof(int),IOOffset
    (Raw_data2G_ptr,width)}, 
  {"height","integer",sizeof(int), 
    IOOffset(Raw_data2G_ptr,height)}, 
  {"buff", IOArrayDecl(char, 
    AVSIMAGE2G),sizeof(char), 
   IOOffset(Raw_data2G_ptr,buff[0])}, 
  {NULL,NULL}, 
};



12

/* avs_source.c */ 
/* some global variables, helper 
   functions omitted … */ 
int main(argc, argv) 
    int argc; 
    char* argv[]; 
{
 /* … */ 
/*Creation of channel and

    registration*/ 
  gen_pthread_init(); 
  cm = CManager_create(); 
  CMfork_comm_thread(cm); 
  if (signal(SIGINT, interruptHandler)
             == SIG_ERR) 
    Styx_errQuit("Signal error"); 

  ec = ECho_CM_init(cm); 

  chan2C = EChannel_typed_create(ec,
               Raw_data2C_fld, NULL); 
  if (chan2C == NULL)
    Styx_errQuit("Failed to create 2C
                 channel.\n"); 
    sourceHandle2C =
       ECsource_typed_subscribe(chan2C, 
                 Raw_data2C_fld, NULL); 

    chan = EChannel_typed_create(ec,
                   Raw_data_fld, NULL); 
  if (chan == NULL)
    Styx_errQuit("Failed to create
                  channel.\n"); 
  fprintf(stdout, "Echo channel ID:\n
             %s\n", ECglobal_id(chan)); 
  sourceHandle =
         ECsource_typed_subscribe(chan, 
                   Raw_data_fld, NULL); 
  fprintf(stdout, "\nEcho 2C (320x240- 
            color) channel ID:\n %s\n", 

ECglobal_id(chan2C));

      /* 
      if (debugging) { 
        sprintf(shotsentFile, "shotsent%d.ppm", i+1); 
        debuggingfd = open(shotsentFile, 
                           O_CREAT|O_WRONLY, S_IRWXU|S_IRGRP|S_IROTH); 
        sprintf(header, "%c%c\n%d %d\n%d\n", rawrec2CP->ppm1, rawrec2CP->ppm2, 
                rawrec2CP->width, rawrec2CP->height, 255); 
        write(debuggingfd, header, sizeof(header)); 
        if (rawrec2CP->buff != NULL) 
          write(debuggingfd, rawrec2CP->buff, rawrec2CP->size); 
        close(debuggingfd); 
      } 
      */ 

      free(rawrecP->buff); 
    } 
    else { 
      debugrecP->tag = i+1; 
      ECsubmit_typed_event(sourceHandle, debugrecP); 
    } 
    ++NumRecSubmitted; 
      /*^^^*/ 

    if (MeasureMe) 
      if (NumRecSubmitted == reported * reportFreq) { 
        bwHist = (double*) malloc (((int) (NumRecSubmitted/Freq)) * 
                                   sizeof(double)); 
        sensNet_GetHistory(bwHist, (int) (NumRecSubmitted/Freq), SENSN
        if (bwHist == NULL) Styx_errQuit("Not enough resources.\n"); 

ET_WRITE);

        fprintf(stdout, "Bandwidth mean:   \t%.3g Mbps [sdev %2.3g]\r", 
                Stats_mean (bwHist, (int) (NumRecSubmitted/Freq)), 
                Stats_sde
        fflush(stdout); 

v (bwHist, (int) (NumRecSubmitted/Freq))); 

        free(bwHist); 
        ++reported; 
      } 

  } /* end for */ 

  dumpStats(); 

if (MeasureMe) sensNet_Fini
  //EChannel_destroy(chan); 

sh();

  //CManager_close(cm); 

  exit (EXIT_SUCCESS); 
} /* main */

7.2 Web Source Combination Applica-
tion

In the java version of SIP/XIP Infopipe, all the data 

flowing through Infopipes are XML-formatted. For 

example, there is a "mapImage" data type for 

containing data of a map image.  The data format

mapImage exchanged between infopipes will be 

like this. 

 of 

<infopipeDataFormat version="0.1"> 
<dataContent type="mapImage"> 
  <conteType>_contentTypeOfImage_ 
  </contentType> 
  <contentTransferEncoing>
             _EncodingType_ 
  </contentTransferEncoding> 
  <contentBody>_Body_</contentBody> 
</dataContent>
</infopipeDataFormat>

Each Infopipe parses the XML data, and generates 

another XML-formatted data stream after process-

ing.  Without Infopipes, programmers need to add 

the parsing and generating code as shown below: 

public void parseXML(Reader in) throws
    Exception
{
    InputSource inputSource =
                   new InputSource(in); 
    DOMParser parser = new DOMParser(); 
    try { 
        parser.parse(inputSource); 
       } catch (IOException ioe) { 
              ioe.printStackTrace(); 
              throw new
              Exception(ioe.getMessage());
       } catch (SAXException se) { 
           se.printStackTrace();

            throw new 
               Exception(se.getMessage());
       } 
    Node root =
parser.getDocument().getDocumentElement();
    Node dataNode = null; 
    Node currNode = null; 
    NodeList nodeList = null; 
    try { 
       dataNode =
       XPathAPI.selectSingleNode(root,
                           "dataContent");
       if (dataNode == null ||
           !((Element)
   dataNode).getAttribute("type").equals( 
"mapImage"))



13

       { 
        throw new
        Exception( 
          "Inf

invalid data"); 
       } 
    currNode = null;

opipeDataType_mapImage:

    currNode=XPathAPI.selectSingleNode 
      (dataNode,"contentType/text()"); 
    if (currNode != null) { 
      if (currNode.getNodeType() ==
                       Node.TEXT_NODE)
         contentType =
            currNode.getNodeValue(); 
      } else { 
          throw new Exception(); 
      } 
    } else { 
         throw new Exception 
          ("InfopipeDataType_mapImage: 
                contentType is null"); 
    } 
    currNode =
       XPathAPI.selectSingleNode( 
         dataNode,
       "contentTransferEncoding/text()" 
        ); 
    if (currNode != null) { 
       if (currNode.getNodeType() ==
           Node.TEXT_NODE)
       { contentTransferEncoding =
            currNode.getNodeValue(); 

       } 
       else
          throw new Exception(); 
       } 
    } else { 
       throw new Exception ( 
          "InfopipeDataType_mapImage: 
          contentTransferEncoding is
          null"); 
     } 
    currNode =
       XPathAPI.selectSingleNode( 
       DataNode, "contentBody/text()"); 
    if(currNode != null) { 
        if (currNode.getNodeType() ==
            Node.TEXT_NODE) { 
          contentBody =
             currNode.getNodeValue(); 
           } 
        else { 
          throw new Exception(); 
        } 
     }
     else { 
          throw new Exception(); 
     } catch (SAXException se) { 
         se.printStackTrace(); 
         throw new Exception
                (se.getMessage()); 
     } 

}

public String formatToXML() { 
    String doc = new String(); 
    doc = "<infopipeDataFormat
        version=\"0.1\"><dataContent
          type=\"mapImage\">"; 
    if (contentType == null) { 
       doc = doc +
       "<contentType></contentType>"; 
    } 
    else { 
       doc = doc + "<contentType>" +
      contentType + "</contentType>"; 
    } 

    if (contentTransferEncoding==null) 
       { 
        doc = doc + 
          "<contentTransferEncoding>
          </contentTransferEncoding>"; 
       } 
    else { 
        doc = doc +
          "<contentTransferEncoding>"+
          contentTransferEncoding +
          "</contentTransferEncoding>"; 
       } 
    if (contentBody == null) { 
        doc = doc +
          "<contentBody></contentBody>"; 
    } 
    else { 
      doc = doc + "<contentBody>" + 
           contentBody +
           "</contentBody>"; 
      } 
    doc = doc +  "</dataContent>
               </infopipeDataFormat>"; 
    return doc; 
}
// End of the code 

Using SIP/XIP, we can replace the above code with 

only 5 lines:

<dataDef name="mapImage"> 
  <arg type="string" 
name="contentType"/>
  <arg type="string"
       name="contentTransferEncoding"/>
  <arg type="string" 
name="contentBody"/> </dataDef> 


	Portland State University
	PDXScholar
	6-2002

	Implementing Infopipes: The SIP/XIP Experiment
	Calton Pu
	Galen Swint
	Charles Consel
	Younggyun Koh
	Ling Liu
	See next page for additional authors

	Let us know how access to this document benefits you.
	Citation Details
	Authors


	tmp.1389999687.pdf.tUROr

