6 research outputs found

    Maintaining productivity over extended durations for perfusion processes

    Get PDF
    Please click Additional Files below to see the full abstract

    Limitations of subcloning as a tool to characterize homogeneity of a cell population

    Get PDF
    Cloning, or the derivation of a cell line from a single cell is a critical step in the generation of a manufacturing cell line. The expectation is that the process of cloning will result in a uniform and homogeneous cell line that will ensure robust product quality over the lifetime of the product. Regulatory guidelines require the sponsors provide assurance of clonality of the production cell line and when such evidence is not available, additional studies are required to further ensure consistent long-term manufacturing of the product. One approach to characterize homogeneity of a cell line is subclone analysis where clones are generated from the original cell line and an evaluation of their similarity is performed lines. To study the suitability of subclone analysis to provide additional assurance that a production cell line is clonally derived, an antibody producing CHO Master Cell Bank (MCB), which was cloned by a validated FACS method and with a clear documented day 0 image was characterized. Specifically, this MCB was subcloned and imaged to assure each of the subclones were derived from a single cell. A total of 46 subclones were analyzed for growth, productivity, product quality, as well as copy number and integration site analysis. Despite demonstration of clonality for both the MCB and the subclones, significant diversity in cell growth, protein productivity, and product quality attributes was observed between the 46 subclones. The diversity in protein productivity and quality were reproduced across bioreactor scales, suggesting that albeit different, the subclones were stable populations that varied from the parental clonal cell line. Additionally, while ~2-fold shifts in copy number were seen, no significant integration site changes were observed. Our data suggest subcloning induces changes (genetic or epigenetic) outside the region of the transgene which result in the subclones exhibiting a wide diversity in cell growth protein productivity, and product quality. Transcriptomic and genomic characterization studies are underway to further characterize the differences between subclones and the MCB. Importantly, the subclones do keep their individual characteristics as they mature and stabilize, suggesting that the resulting population that grows out of a single cell is stable but with unique properties. Overall, this work adds to the growing body of work on CHO cell plasticity and suggests that subcloning is not an effective approach to demonstrate homogeneity of a cell bank

    Aggregatibacter actinomycetemcomitans as the Aetiological Cause of Rheumatoid Arthritis: What Are the Unsolved Puzzles?

    No full text
    Leukotoxin A (LtxA) is the major virulence factor of an oral bacterium known as Aggregatibacter actinomycetemcomitans (Aa). LtxA is associated with elevated levels of anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) patients. LtxA targets leukocytes and triggers an influx of extracellular calcium into cytosol. The current proposed model of LtxA-mediated hypercitrullination involves the dysregulated activation of peptidylarginine deiminase (PAD) enzymes to citrullinate proteins, the release of hypercitrullinated proteins through cell death, and the production of autoantigens recognized by ACPA. Although model-based evidence is yet to be established, its interaction with the host’s immune system sparked interest in the role of LtxA in RA. The first part of this review summarizes the current knowledge of Aa and LtxA. The next part highlights the findings of previous studies on the association of Aa or LtxA with RA aetiology. Finally, we discuss the unresolved aspects of the proposed link between LtxA of Aa and RA

    Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line

    No full text
    Regulatory guidelines require the sponsors to provide assurance of clonality of the production cell line, and when such evidence is not available, additional studies are typically required to further ensure consistent long-term manufacturing of the product. One potential approach to provide such assurance of clonal derivation of a production cell line is to characterize subclones generated from the original cell line and assess their phenotypic and genotypic similarity with the hypothesis that cell lines derived from a clonal bank will share performance, productivity and product quality characteristics. In this study, a production cell line that was cloned by a validated FACS approach coupled with day 0 imaging for verification of single-cell deposition was subcloned using validated FACS and imaging methods. A total of 46 subclones were analyzed for growth, productivity, product quality, copy number, and integration site analysis. Significant diversity in cell growth, protein productivity, product quality attributes, and copy number was observed between the subclones, despite stability of the parent clone over time. The diversity in protein productivity and quality of the subclones were reproduced across time and production scales, suggesting that the resulting population post sub-cloning originating from a single cell is stable but with unique properties. Overall, this work demonstrates that the characteristics of isolated subclones are not predictive of a clonally derived parental clone. Consequently, the analysis of subclones may not be an effective approach to demonstrate clonal origin of a cell bank
    corecore