384 research outputs found

    Geographic constraints on social network groups

    Get PDF
    Social groups are fundamental building blocks of human societies. While our social interactions have always been constrained by geography, it has been impossible, due to practical difficulties, to evaluate the nature of this restriction on social group structure. We construct a social network of individuals whose most frequent geographical locations are also known. We also classify the individuals into groups according to a community detection algorithm. We study the variation of geographical span for social groups of varying sizes, and explore the relationship between topological positions and geographic positions of their members. We find that small social groups are geographically very tight, but become much more clumped when the group size exceeds about 30 members. Also, we find no correlation between the topological positions and geographic positions of individuals within network communities. These results suggest that spreading processes face distinct structural and spatial constraints.Comment: 10 pages, 5 figure

    Going for 2D or 3D? : investigating various machine learning approaches for peach variety identification

    Get PDF
    Machine learning-based pattern recognition methods are about to revolution-ize the farming sector. For breeding and cultivation purposes, the identifica-tion of plant varieties is a particularly important problem that involves spe-cific challenges for the different crop species. In this contribution, we con-sider the problem of peach variety identification for which alternatives to DNA-based analysis are being sought. While a traditional procedure would suggest using manually designed shape descriptors as the basis for classifica-tion, the technical developments of the last decade have opened up possibili-ties for fully automated approaches, either based on 3D scanning technology or by employing deep learning methods for 2D image classification. In our feasibility study, we investigate the potential of various machine learning ap-proaches with a focus on the comparison of methods based on 2D images and 3D scans. We provide and discuss first results, paving the way for future use of the methods in the field

    Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.

    Get PDF
    Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology

    Quantification of Epstein-Barr virus DNA load, interleukin-6, interleukin-10, transforming growth factor-β1 and stem cell factor in plasma of patients with nasopharyngeal carcinoma

    Get PDF
    BACKGROUND: Nasopharyngeal carcinoma (NPC) is a common epithelial neoplasm among the Chinese populations in Southern China and South East Asia. Epstein-Barr virus (EBV) is known to be an important etiologic agent of NPC and the viral gene products are frequently detected in NPC tissues along with elevated antibody titres to the viral proteins (VCA and EA) in a majority of patients. Elevated plasma EBV DNA load is regarded as an important marker for the presence of the disease and for the monitoring of disease progression. However, other serum/plasma parameters such as the levels of certain interleukins and growth factors have also been implicated in NPC. The objectives of the present study are, 1) to investigate the correlations between plasma EBV DNA load and the levels of interleukin (IL)-6, IL-10, TGF-β1 and SCF (steel factor) and 2) to relate these parameters to the stages of NPC and the effect of treatment. METHODS: A total of 78 untreated NPC patients were enrolled in this study. Of these, 51 were followed-up after treatment. The remaining patients had irregular or were lost to follow-up. Plasma EBV DNA was quantified using real-time quantitative PCR. The levels of plasma interleukins and growth factors were quantified using ELISA. RESULTS: A significant decrease in EBV DNA load was detected in plasma of untreated NPC patients (1669 ± 637 copies/mL; n = 51) following treatment (57 ± 37 copies/mL, p < 0.05); n = 51). Plasma EBV DNA load was shown to be a good prognosticator for disease progression and clinical outcome in five of the follow-up patients. A significant difference in IL-6 levels was noted between the untreated patients (164 ± 37 pg/mL; n = 51) and following treatment (58 ± 16 pg/mL, p < 0.05; n = 51). Positive correlations between EBV DNA load and IL-10 (r(49) = 0.535, p < 0.01), between IL6 and IL-10 (r(49) = 0.474, p < 0.01) and between TGF and SCF (r(49) = 0.464, p < 0.01) were observed in patients following treatment. None of the parameters tested including IgA-VCA were associated with tumour stages. CONCLUSION: We conclude that among the parameters investigated, EBV DNA load and IL-6 levels were promising markers for the presence of NPC and for the assessment of treatment outcome

    Genetic Variation in the EGFR Gene and the Risk of Glioma in a Chinese Han Population

    Get PDF
    Previous studies have shown that regulation of the epidermal growth factor gene (EGFR) pathway plays a role in glioma progression. Certain genotypes of the EGFR gene may be related to increased glioblastoma risk, indicating that germ line EGFR polymorphisms may have implications in carcinogenesis. To examine whether and how variants in the EGFR gene contribute to glioma susceptibility, we evaluated nine tagging single-nucleotide polymorphisms (tSNPs) of the EGFR gene in a case–control study from Xi'an city of China (301 cases, 302 controls). EGFR SNP associations analyses were performed using SPSS 16.0 statistical packages, PLINK software, Haploview software package (version 4.2) and SHEsis software platform. We identified two susceptibility tSNPs in the EGFR gene that were potentially associated with an increased risk of glioma (rs730437, p = 0.016; OR: 1.32; 95%CI: 1.05–1.66 and rs1468727, p = 0.008; OR: 1.31; 95%CI: 1.04–1.65). However, after a strict Bonferroni correction analysis was applied, the significance level of the association between EGFR tSNPs and risk of glioma was attenuated. We observed a protective effect of haplotype “AATT” of the EGFR gene, which was associated with a 29% reduction in the risk of developing glioma, while haplotype “CGTC” increased the risk of developing glioma by 36%. Our results, combined with previous studies, suggested an association between the EGFR gene and glioma development

    The Association of AMPK with ULK1 Regulates Autophagy

    Get PDF
    Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex

    Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer

    Get PDF
    Electroluminescence efficiency is crucial for the application of quantum-dot light-emitting diodes (QD-LEDs) in practical devices. We demonstrate that nitrogen-doped carbon nanodot (N-CD) interlayer improves electrical and luminescent properties of QD-LEDs. The N-CDs were prepared by solution-based bottom up synthesis and were inserted as a hole transport layer (HTL) between other multilayer HTL heterojunction and the red-QD layer. The QD-LEDs with N-CD interlayer represented superior electrical rectification and electroluminescent efficiency than those without the N-CD interlayer. The insertion of N-CD layer was found to provoke the Forster resonance energy transfer (FRET) from N-CD to QD layer, as confirmed by time-integrated and - resolved photoluminescence spectroscopy. Moreover, hole-only devices (HODs) with N-CD interlayer presented high hole transport capability, and ultraviolet photoelectron spectroscopy also revealed that the N-CD interlayer reduced the highest hole barrier height. Thus, more balanced carrier injection with sufficient hole carrier transport feasibly lead to the superior electrical and electroluminescent properties of the QD-LEDs with N-CD interlayer. We further studied effect of N-CD interlayer thickness on electrical and luminescent performances for high-brightness QD-LEDs. The ability of the N-CD interlayer to improve both the electrical and luminescent characteristics of the QD-LEDs would be readily exploited as an emerging photoactive material for high-efficiency optoelectronic devices.ope

    Alteration of EGFR Spatiotemporal Dynamics Suppresses Signal Transduction

    Get PDF
    The epidermal growth factor receptor (EGFR), which regulates cell growth and survival, is integral to colon tumorigenesis. Lipid rafts play a role in regulating EGFR signaling, and docosahexaenoic acid (DHA) is known to perturb membrane domain organization through changes in lipid rafts. Therefore, we investigated the mechanistic link between EGFR function and DHA. Membrane incorporation of DHA into immortalized colonocytes altered the lateral organization of EGFR. DHA additionally increased EGFR phosphorylation but paradoxically suppressed downstream signaling. Assessment of the EGFR-Ras-ERK1/2 signaling cascade identified Ras GTP binding as the locus of the DHA-induced disruption of signal transduction. DHA also antagonized EGFR signaling capacity by increasing receptor internalization and degradation. DHA suppressed cell proliferation in an EGFR-dependent manner, but cell proliferation could be partially rescued by expression of constitutively active Ras. Feeding chronically-inflamed, carcinogen-injected C57BL/6 mice a fish oil containing diet enriched in DHA recapitulated the effects on the EGFR signaling axis observed in cell culture and additionally suppressed tumor formation. We conclude that DHA-induced alteration in both the lateral and subcellular localization of EGFR culminates in the suppression of EGFR downstream signal transduction, which has implications for the molecular basis of colon cancer prevention by DHA
    corecore