17,421 research outputs found

    Emission characteristics of CO, NOx, SO2 and indications of biomass burning observed at a rural site in eastern China

    Get PDF
    Atmospheric O3, CO, SO2, and NO* y (NO* y ≈ NO + NO2 + PAN + organic nitrates + HNO3 + N2O5 + ⋯) were measured in 1999-2000 at a rural/agricultural site in the Yangtze Delta of China. In this paper we analyze the measurement results to show the emission characteristics of the measured gases and to infer relevant emission ratios. Positive correlations were found between CO and NO* y with a slope (Δ[CO]/Δ[NO* y]) of 36 (ppbv/ppbv) for the winter and nighttime measurements. The ratio is considerably larger than that (≈10 ppbv/ppbv) observed in the industrialized countries. The highest CO/NO* y ratio (30-40 ppbv/ppbv) occurred in September-December 1999 and June 2000. The good correlation between CO and the biomass burning tracer CH3Cl and the lack of correlation with the industrial tracer C2Cl4 suggests that the burning of biofuels and crop residues is a major source for the elevated CO and possibly for other trace gases as well. The average SO2 to NO* y ratio was 1.37 ppbv/ppbv, resulting from the use of relatively high-sulfur coals in China. The measured SO2/NO* y and ΔCO/ΔNO* y were compared with the respective ratios from the current emission inventories for the study region, which indicated a comparable SO2/NOx emission ratio but a large discrepancy for CO/NOx. The observed CO to NO* y ratio was more than 3 times the emission ratio derived from the inventories, indicating the need for further improvement of emission estimates for the rural/agricultural regions in China. Additional research will be needed to study the implications of rural emissions to atmospheric chemistry and climate on both regional and global scales.Department of Civil and Environmental Engineerin

    EBW technology applied on the ICRF antenna component

    Get PDF
    Central conductor is one of the key components of ion cyclotron ranges of heating antenna, which is usually formed by welding due to the complex structures. High level of welding seam quality and small deformation are very important to central conductor. Electron beam welding (EBW) is suggested as the central conductor welding. To meet EBW requirements and reduce the risk, complex and high level of the accuracy welding fixture have been designed for central conductor EBW. Some samples were manufactured to do test and examination for EBW qualification before central conductor welding. Based on the welding parameters, thermal analysis using finite element method for the welding seam have been carried out. One mockup of central conductor for EBW has been made for proving welding parameters. In addition, some postwelding process were employed after one central conductor EBW. Results of examination and inspection of one central conductor using EBW are presented in this paper

    Regional and local contributions to ambient non-methane volatile organic compounds at a polluted rural/coastal site in Pearl River Delta, China

    Get PDF
    Identification of major sources of airborne pollutants and their contribution to pollutant loadings are critical in developing effective pollution control and mitigation strategies. In this study, a comprehensive dataset of non-methane volatile organic compounds (NMVOCs) collected from August 2001 to December 2002 at a polluted rural/coastal site in the Pearl River Delta (PRD) is analyzed to assess the relative contributions of major pollution sources to ambient NMVOC mixing ratios. A unique approach based on emission ratios of individual chemical species was used to classify the bulk air samples in order to apportion regional and local source contributions to the measured mixing ratios. The collected air samples fell into four major groups, including air masses from the inner PRD region and Hong Kong (HK) urban area. To estimate the source apportionment of NMVOCs, a principal component analysis/absolute principal component scores receptor model was applied to the classified data points. The results indicate that the regional and local source contributions to ambient NMVOC levels at the site were significantly different due to the differences in local versus regional energy use and industrial activities. For air masses originating from HK, vehicular emissions accounted for approximately 39% of the total NMVOC levels, followed by industrial emissions (35%), gasoline evaporation (14%) and commercial/domestic liquefied petroleum gas/natural gas use (12%). By contrast, for air masses originating from the PRD the industrial emissions accounted for 43% of the total NMVOC burden, followed by vehicular emissions (32%) and biomass burning (25%). In particular, the higher regional contribution of biomass burning found in this study as compared to existing emission inventories suggests that further efforts are necessary to refine the emission inventories of NMVOCs in the PRD region. © 2006 Elsevier Ltd. All rights reserved

    Measurements of trace gases in the inflow of South China Sea background air and outflow of regional pollution at Tai O, Southern China

    Get PDF
    We present a 16-month record of ozone (O3), carbon monoxide (CO), total reactive nitrogen (NOy), sulphur dioxide (SO2), methane (CH4), C2 - C8 non-methane hydrocarbons (NMHCs), C1 - C2 halocarbons, and dimethyl sulfide (DMS) measured at a southern China coastal site. The study aimed to establish/update seasonal profiles of chemically active trace gases and pollution tracers in subtropical Asia and to characterize the composition of the 'background' atmosphere over the South China Sea (SCS) and of pollution outflow from the industrialized Pearl River Delta (PRD) region and southern China. Most of the measured trace gases of anthropogenic origin exhibited a winter maximum and a summer minimum, while O3 showed a maximum in autumn which is in contrast to the seasonal behavior of O3 in rural eastern China and in many mid-latitude remote locations in the western Pacific. The data were segregated into two groups representing the SCS background air and the outflow of regional continental pollution (PRD plus southern China), based on CO mixing ratios and meteorological conditions. NMHCs and halocarbon data were further analyzed to examine the relationships between their variability and atmospheric lifetime and to elucidate the extent of atmospheric processing in the sampled air parcels. The trace gas variability (S) versus lifetime (τ) relationship, defined by the power law, Slnx = Aτ-b, (where X is the trace gas mixing ratio) gives a fit parameter A of 1.39 and exponent b of 0.42 for SCS air, and A of 2.86 and b of 0.31 for the regional continental air masses. An examination of ln[n-butane]/ln[ethane] versus ln[propane]/ln[ethane] indicates that their relative abundance was dominated by mixing as opposed to photochemistry in both SCS and regional outflow air masses. The very low ratios of ethyne/CO, propane/ethane and toluene/benzene suggest that the SCS air mass has undergone intense atmospheric processing since these gases were released into the atmosphere. Compared to the results from other polluted rural sites and from urban areas, the large values of these species in the outflow of PRD/southern China suggest source(s) emitting higher levels of ethyne, benzene, and toluene, relative to light alkanes. These chemical characteristics could be unique indicators of anthropogenic emissions from southern China. © Springer Science + Business Media, Inc. 2005

    Source contributions to ambient VOCs and CO at a rural site in eastern China

    Get PDF
    Ambient data on volatile organic compounds (VOCs) and carbon monoxide (CO) obtained at a rural site in eastern China are analyzed to investigate the nature of emission sources and their relative contributions to ambient concentrations. A principal component analysis (PCA) showed that vehicle emissions and biofuel burning, biomass burning and industrial emissions were the major sources of VOCs and CO at the rural site. The source apportionments were then evaluated using an absolute principal component scores (APCS) technique combined with multiple linear regressions. The results indicated that 71%±5% (average±standard error) of the total VOC emissions were attributed to a combination of vehicle emissions and biofuel burning, and 7%±3% to gasoline evaporation and solvent emissions. Both biomass burning and industrial emissions contributed to 11%±1% and 11%±0.03% of the total VOC emissions, respectively. In addition, vehicle emissions and biomass and biofuel burning accounted for 96%±6% of the total CO emissions at the rural site, of which the biomass burning was responsible for 18%±3%. The results based on PCA/APCS are generally consistent with those from the emission inventory, although a larger relative contribution to CO from biomass burning is indicated from our analysis. © 2004 Elsevier Ltd. All rights reserved

    Sound propagation in and low frequency noise absorption by helium-filled porous material

    Get PDF
    Low-frequency noise is difficult to deal with by traditional porous material due to its inherent high acoustic impedance. This study seeks to extend the effective range of sound absorption to lower frequencies by filling a low density gas, such as helium, in the porous material. Compared with conventional air-filled absorption material, the helium-filled porous material has a much reduced characteristic impedance; hence, a good impedance matching with pure air becomes more feasible at low frequencies. The acoustic properties of a series of helium-filled porous materials are investigated with a specially designed test rig. The characteristic of the sound propagation in a helium-filled porous material is established and validated experimentally. Based on the measured acoustic properties, the sound absorption performance of a helium-filled absorber (HA) of finite thickness is studied numerically as well as experimentally. For a random incidence field, the HA is found to perform much better than the air-filled absorber at low frequencies. The main advantage of HA lies in the middle range of oblique incidence angles where wave refraction in the absorber enhances sound absorption. The advantage of HA as duct lining is demonstrated both numerically and experimentally. © 2009 Acoustical Society of America.published_or_final_versio
    corecore