1,469 research outputs found

    Three-dimensional interaction between uniform current and a submerged horizontal cylinder in an ice-covered channel

    Get PDF
    The problem of interaction of a uniform current with a submerged horizontal circular cylinder in an ice-covered channel is considered. The fluid flow is described by linearized velocity potential theory and the ice sheet is treated as a thin elastic plate. The potential due to a source or the Green function satisfying all boundary conditions apart from that on the body surface is first derived. This can be used to derive the boundary integral equation for a body of arbitrary shape. It can also be used to obtain the solution due to multipoles by differentiating the Green function with its position directly. For a transverse circular cylinder, through distributing multipoles along its centre line, the velocity potential can be written in an infinite series with unknown coefficients, which can be determined from the impermeable condition on a body surface. A major feature here is that different from the free surface problem, or a channel without the ice sheet cover, this problem is fully three-dimensional because of the constraints along the intersection of the ice sheet with the channel wall. It has been also confirmed that there is an infinite number of critical speeds. Whenever the current speed passes a critical value, the force on the body and wave pattern change rapidly, and two more wave components are generated at the far-field. Extensive results are provided for hydroelastic waves and hydrodynamic forces when the ice sheet is under different edge conditions, and the insight of their physical features is discussed

    Hydroelastic wave diffraction by a vertical circular cylinder standing in a channel with an ice cover

    Get PDF
    The problem of hydroelastic wave diffraction by a surface-piercing vertical circular cylinder mounted on the bottom of an ice-covered channel is considered. The ice sheet is modelled as an elastic thin plate with homogeneous properties, while the linearized velocity potential theory is adopted to describe the motion of the fluid. The solution starts from the Green function satisfying all other boundary conditions apart from that on the body surface. This is obtained through applying a Fourier transform in the longitudinal direction of the channel and adopting an eigenfunction expansion in the vertical direction. The boundary conditions on the side walls and ice edges are imposed through an orthogonal product. Through the Green function, the velocity potential due to a surface-piercing structure with arbitrary shape can be expressed through a source distribution formula derived in this work, in which only integrals over the body surface and its interaction line with the ice sheet need to be retained. For a vertical circular cylinder, the unknown source distribution can be expanded further into a Fourier series in the circumferential direction, and then the analytical solution of the velocity potential can be obtained further. Extensive results and discussions are provided for the hydrodynamic forces and vertical shear forces on the cylinder, as well as the deflection and strain of the ice sheet. In particular, the behaviour of the solution near one of the natural frequencies of the channel is investigated in detail

    In vitro evaluation of modified surface microhardness measurement, focus variation 3D microscopy and contact stylus profilometry to assess enamel surface loss after erosive-abrasive challenges

    Get PDF
    The aim of the study was to compare surface loss values after erosion-abrasion cycles obtained with modified surface microhardness measurement (mSMH), focus variation 3D microscopy (FVM) and contact stylus profilometry (CSP). We cut human molars into buccal and lingual halves, embedded them in resin and ground 200 ÎŒm of enamel away. The resulting surfaces were polished. To maintain a reference area, we applied Block-Out resin to partly cover the enamel surface. The samples were incubated in artificial saliva (37°C; 1 h), then rinsed in deionized water (10 s) and dried with oil-free air (5 s). We immersed the specimens individually in 30 mL citric acid (1%, pH 3.6) for 2 min (25°C, 70 rpm dynamic conditions) before brushing them (50 strokes, 200 g) in an automatic brushing machine with toothpaste-slurry. We calculated the surface loss as per mSMH, by re-measuring the length of the same six indentations made before the abrasive challenge. The experiment consisted of five experimental groups that received between 2 and 10 erosion-abrasion cycles. Each group contained 15 specimens and samples in groups 1, 2, 3, 4 and 5 underwent a total of 2, 4, 6, 8 and 10 cycles, respectively. The resin was removed from the reference area in one piece under 10× magnification and the FVM and CSP were performed. Agreement between the methods was calculated with the intraclass correlation coefficient (ICC) and depicted in Bland-Altman plots. All methods presented a linear pattern of surface loss measurements throughout the experiment, leading overall to a strong, statistically significant correlation between the methods (ICC = 0.85; p<0.001). So, despite the different surface loss values, all methods presented consistent results for surface loss measurement

    Steam reforming on transition-metal carbides from density-functional theory

    Full text link
    A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure

    Effect of bainite layer by LSMCIT on wear resistance of medium-carbon bainite steel at different temperatures

    Get PDF
    In this work, bainite layer was prepared by Laser surface melting combined with isothermal treatment (LSMCIT) at 250ÂșC. The microstructures of the samples were analyzed by scanning electron microscopy (SEM), X-ray Diffraction (XRD) and transmission electron microscopy (TEM). Their wear resistances at 20ÂșC, 100ÂșC and 200ÂșC were measured using reciprocating tribometer. After the wear test, the confocal laser scanning microscope and SEM were used to characterize the topography of all abrasion surfaces, and the phase transformations occurred on the contact surfaces were analyzed by XRD. The results show that the microstructure of the LSMCIT sample has been refined to nanoscale. The wear volume reduction ratio of LSMCIT sample is 40.9% at 20ÂșC. The wear resistances of the samples are decreased with increasing of the temperature, however, the decrease in amplitude of the bainite is relatively small. The harder surface of the LSMCIT sample can provides higher mechanical support, and the white-etching layer on surface are difficult to remove by the reciprocating friction. The wear resistances of the LSMCIT samples at 20ÂșC, 100ÂșC and 200ÂșC are excellent, which shows the wide temperature ranges in wear applications

    Genetically engineered distal airway stem cell transplantation protects mice from pulmonary infection

    Get PDF
    Severe pulmonary infection is a major threat to human health accompanied by substantial, which increases medical costs, prolonged inpatient requirements, and high mortality rates. New anti-microbial therapeutic strategies are urgently required to address with the emergence of antibiotic resistance and persistent bacterial infections. In this study, we show that constitutive expression of a native anti-microbial peptide hCAP-18/LL-37 (LL9 37) in transgenic mice aids in clearing Pseudomonas aeruginosa (PAO1), a major pathogen of clinical pulmonary infection. Orthotopic transplantation of adult mouse distal airway stem cells (DASCs), genetically engineered to express LL-37, into injured mouse lung foci enabled large scale incorporation of cells and long-term release of the host defense peptide, protecting the mice from bacterial pneumonia and hypoxemia. Further, adult human DASCs were isolated, expanded, and genetically engineered to demonstrate successful construction of an anti-infective artificial lung. Together, our stem cell-based gene delivery therapeutic platform proposes a new strategy for addressing recurrent pulmonary infections with, providing future translational opportunities

    The importance of baseline viral load when assessing relative efficacy in treatment-naĂŻve HBeAg-positive chronic hepatitis B: a systematic review and network meta-analysis.

    Get PDF
    BACKGROUND: To date no network meta-analysis (NMA) has accounted for baseline variations in viral load when assessing the relative efficacy of interventions for chronic hepatitis B (CHB). We undertook baseline-adjusted and unadjusted analyses using the same data to explore the impact of baseline viral load (BVL) on CHB treatment response. METHODS: We searched Embase, Medline, Medline in Process and the Cochrane CENTRAL databases for randomised clinical trials (RCTs) of monotherapy interventions at licensed doses for use in CHB. Search strategies comprised CHB disease and drug terms (a combination of controlled vocabulary and free text terms) and also a bespoke RCT filter.The NMA was undertaken in WinBUGs using fixed and random effects methods, using data obtained from a systematic review. Individual patient data (IPD) from an entecavir clinical trial were used to quantify the impact of different baseline characteristics (in particular undetectable viral load (UVL) at 1 year) on relative treatment effect. Study level mean baseline values from all identified studies were used. Results were generated for UVL and presented as relative risks (RRs) and 95% credible intervals (CrIs) using entecavir as reference treatment. RESULTS: Overall, for all eight relevant interventions we identified 3,000 abstracts. Following full text review a total of 35 (including the contents of six clinical study reports) met the inclusion critera; 19 were in hepatitis B e antigen (HBeAg)-positive patients and 14 of the 19 contained outcome information of relevance to the NMA.Entecavir and tenofovir studies had heterogeneous patient populations in terms of BVL (mean values 9.29 and 8.65 log10 copies/ml respectively). After adjusting UVL for BVL using an informative prior based on the IPD analysis, the difference between entecavir and tenofovir was not statistically significant (RR 1.27, 95% CrI 0.96 to 1.47-fixed effects). A similar conclusion was found in all sensitivity analyses. Adjusted tenofovir results were more consistent with observed clinical trial response rates. CONCLUSIONS: This study demonstrates the importance of adjusting for BVL when assessing the relative efficacy of CHB interventions in achieving UVL. This has implications for both clinical and economic decision making
    • 

    corecore