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The problem of hydroelastic wave diffraction by a surface piercing vertical circular cylinder7
mounted on the bottom of an ice-covered channel is considered. The ice sheet is modelled8
as an elastic thin plate with homogeneous properties, while the linearized velocity potential9
theory is adopted to describe the motion of the fluid. The solution starts from the Green10
function satisfying all other boundary conditions apart from that on the body surface. This11
is obtained through applying Fourier transform in the longitudinal direction of the channel12
and adopting eigenfunction expansion in the vertical direction. The boundary conditions13
on the side walls and ice edges are imposed through an orthogonal product. Through the14
Green function, the velocity potential due to a surface-piercing structure with arbitrary shape15
can be expressed through a source distribution formula derived in this work, in which only16
integrals over the body surface and its interaction line with the ice sheet need to be retained.17
For a vertical circular cylinder, the unknown source distribution can be further expanded18
into a Fourier series in the circumferential direction, and then the analytical solution of the19
velocity potential can be further obtained. Extensive results and discussions are provided for20
the hydrodynamic forces and vertical shear forces on the cylinder, as well as the deflection21
and strain of the ice sheet. In particular, the behaviour of the solution near one of the natural22
frequencies of the channel is investigated in detail.23
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1. introduction28

In ocean engineering, model tests in a wave or towing tank are commonly undertaken29
to investigate the hydrodynamic properties of offshore structures. Due to the existence of30
side walls, tanks or channels have their own natural frequencies, which leads to that the31
hydrodynamic performance of structures in tanks may differ from that in unbounded ocean.32
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Therefore, it is of practical importance to understand the interaction between fluid and33
structures in a tank or channel.34
Columns with circular sections are very important structural components that have been35

widely used in many types of marine structures, such as the legs of offshore platforms.36
The problem of free surface wave interacting with vertical circular cylinders in a channel37
has received considerable attention since last century. Based on the linearized velocity38
potential theory, Eatock Taylor & Hung (1985) calculated the mean drift force on a single39
vertical cylinder in a channel by treating the side walls as mirrors, and then the problem was40
approximated by an array of cylinders in the open sea. Yeung & Sphaier (1989) proposed a41
more accurate approach by placing an infinite number of cylinders in the planes perpendicular42
to the channel, and then considered the problem of waves radiation and diffraction by a43
cylinder standing at the centre of the channel. The same problem was also considered by44
Linton et al. (1992) through a different method. They expressed the velocity potential in terms45
of an infinite series, where each term in the series satisfies all the boundary conditions apart46
from that on the body surface. This method was confirmed to be very effective for capturing47
trapped modes (Ursell 1951) and far field waves. The same procedure was also employed48
by McIver & Bennett (1993) and extended to a vertical cylinder at non-centre positions of49
the channel. Later, Evans & Porter (1997) and Utsunomiya & Eatock Taylor (1999) further50
considered the trapped mode waves around multiple vertical circular cylinders in a channel.51
In addition to the work listed above, studies about structures of other shapes can be found in52
Wu (1998) and Ursell (1999) for wave diffraction and radiation by a fully submerged sphere,53
where the method of multipole expansion was applied. A more recent numerical work by54
Newman (2017) also analysed the trapped modes of bodies with arbitrary shapes in channels.55
As the scientific exploration and commercial activities in polar and other icy water regions56

have greatly increased (Smith & Stephenson 2013) in recent years, there has been an57
increasing interest in understanding the hydrodynamic performance of offshore structures58
in fluid with an ice cover. Generally, an ice sheet covering a large area could be modelled59
as a thin elastic plate (Greenhill 1886). Based on this, a large volume of work about wave60
and ice sheets interaction has been undertaken. Typical examples include those by Fox &61
Squire (1994) for oblique incident water wave transmission and reflection by a semi-infinite62
ice sheet, Meylan & Squire (1996) for wave diffraction by a circular ice floe, as well as Porter63
(2019) for wave interaction with a rectangular ice plate.64
In reality, when offshore structures are operating in icy water, the surrounding water65

surface might be frozen, and the body surfaces may contact directly with the ice sheet66
edge. Therefore, the interaction of hydroelastic waves and structures in such a case has been67
extensively investigated. For three-dimensional surface -piercing bodies, Brocklehurst et al.68
(2011) studied the problem of hydroelastic waves scattered by a vertical circular cylinder69
using Weber transform, where the cylinder was assumed to be clamped into the ice sheet,70
and detailed analyses were made on the hydrodynamic forces and vertical shear forces on the71
cylinder, as well as the principal strain and deflection of the ice sheet. Dişibüyük et al. (2020)72
studied the similar topic but for a vertical cylinder of a non-circular cross section. In their73
work, the impermeable condition on the body surface was satisfied on the mean position by74
applying the perturbation theory, and then the velocity potential was derived by the method of75
eigenfunction expansion. The problem of hydroelastic waves diffracted by multiple vertical76
circular cylinders was investigated by Ren et al. (2018a), in which the edge conditions at the77
intersection lines of the ice sheet and each cylinder surface were imposed through Green’s78
second identity. Their procedure was appliable to any types of edges including clamped,79
simply supported, free and their combinations. Their results showed that the edge condition80
would significantly affect the hydrodynamic forces on the cylinder. In some other cases, the81
ice edge does not directly contact the body surface. Instead, there may be a gap of open82
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water region, such as bodies floating in a polynya or a lead. In such a case, both conditions83
on ice-covered surface and free surface need to be considered. Typically, Ren et al. (2018b)84
derived an analytical solution for wave interaction with a vertical circular cylinder in a85
polynya standing arbitrarily. Later, Li et al. (2020) proposed a hybrid numerical method and86
extended it to arbitrary shapes of floating bodies and polynya. Other investigations about87
wave-ice sheet-structures interactions can be also found in Das & Mandal (2008) and Das88
et al. (2020) for a fully submerged sphere and a thin cap, respectively.89
The ice sheet in the above studies is normally treated as unbounded, which can be realistic90

in the polar ocean. By contrast, a tank or channel is a confined region.When it is fully covered91
by an ice sheet, the edge of the ice will contact the side walls with certain constraints. Then the92
effects of the edge conditions cannot be ignored. In fact, the wave propagation in a channel93
with an ice cover has been found very different from that in a free surface channel. The94
propagation of hydroelastic waves in a rectangular channel with an ice cover clamped into95
two side walls was considered by Korobkin et al. (2014), their results indicated that the waves96
in an ice-covered channel are normally fully three-dimensional. Later, a similar analysis was97
also made to an ice-covered channel with free edges by Batyaev & Khabakhpasheva (2015).98
Ren et al. (2020) proposed a different procedure that can be effectively applied to ice-covered99
channels with any combinations of three common types of edge constraints (clamped, free100
and simply supported). From the results, they pointed out that the dispersion relation and the101
wave profile were significantly affected by the edge conditions. Based on the method in Ren102
et al. (2020), amore recent work byYang et al. (2021) first constructed theGreen function due103
to a steady moving source, and then adopted the multipole expansion method to investigate104
interaction between a uniform current and a horizontal circular cylinder submerged in an105
ice-covered channel.106
The nature of the work by Yang et al. (2021) is in fact to understand the wave profile107

generated by a steady current passing through a submerged body. In this work, we shall108
consider the problem of hydroelastic waves diffracted by a vertical circular cylinder in a109
channel with an ice cover. Since the problem is periodic in time rather than steady, the110
boundary conditions on the ice sheet will be different. In such a case, the Green function111
needs to be reconstructed. Besides, the method of transverse mode expansion used in Yang112
et al. (2021)may not be efficient in the present problem.Alternatively, theGreen function here113
is derived in a series of eigenfunctions along the vertical direction, where the edge conditions114
on the intersections of the ice sheet and two side walls are imposed through two orthogonal115
inner products. Through the Green function, a source distribution formula for the velocity116
potential of surface-piercing structures with arbitrary shapes is established. Compared with117
the problem in free surface channels, an extra integral along the intersection line of the ice118
sheet and the body surface is added in the formula to satisfy the edge conditions. By further119
expanding the Green function into a cylindrical coordinate system, an analytical solution for120
a vertical circular cylinder mounted to the bottom of the channel is obtained. Based on the121
results, extensive analyses are made for the physical behaviour of the hydrodynamic forces122
and vertical shear forces on the cylinder, as well as the wave profiles and principal strains123
in the ice sheet near the cylinder. In particular, the behaviour of the solution near or at the124
natural frequencies of the channel are also discussed.125
The paper is arranged as follows. In Section 2, the linearized boundary value problem126

for a vertical circular cylinder in a channel with an ice cover is presented. In Section 3.1,127
the Green function or the velocity potential due to an oscillating source is derived, while128
using a similar procedure, the velocity potential of the incident wave is provided in Section129
3.2. In Section 3.3, the velocity potential due to a vertical circular cylinder is solved from130
the boundary integral equation, based on which, the formulas for hydrodynamic forces and131
vertical shear forces are obtained in Section 3.4. The numerical results are presented and132
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Figure 1: Coordinate system and sketch of the problem.

discussed in Section 4, followed by the conclusions in Section 5. The key procedure to transfer133
the Green function in the unbounded ocean to a series form is provided in Appendix A. The134
expressions of some essential coefficients are summarized in Appendix B. In Appendix C,135
a general source distribution formula for surface-piercing structures with arbitrary shapes is136
constructed.137

2. Mathematical formulations138

The problem of hydroelastic wave diffraction by a vertical circular cylinder in an ice-139
covered rectangular channel is sketched in figure 1. A Cartesian coordinate system O − xyz140
is established with its origin at the centre line of the still water surface, the x−axis is along141
the longitudinal direction and the z−axis measures vertically upwards. An incident wave142
comes from x = +∞ and will be scattered by the cylinder. Two side walls of the channel are143
located at y = ±b, and the bottom of the channel is assumed to be horizontal and at z = −H.144
The upper surface of fluid is fully covered by a homogeneous ice sheet with density ρi and145
thickness hi . The surface piercing vertical circular cylinder of radius a is mounted on the146
bottom, whose centre axis is along x = xc & y = yc . A cylindrical coordinate system (r, θ, z)147
is further defined as148

x = xc + r sin θ
y = yc + r cos θ

}
, (2.1)149

where r = 0 is the centre of the cylinder.150
Based on the assumption that the fluid with density ρ is ideal, incompressible and151

homogeneous, and its motion is irrotational, the fluid flow can be described by the velocity152
potential Φ. For small amplitude waves, linearization of the boundary conditions on the ice153
sheet can be further introduced. For sinusoidal wave in time with frequency ω, the total154
velocity potential can be written in the following form155

Φ = Re
{
φ(x, y, z) × eiωt

}
. (2.2)156

where φ is composed of the incident component φI and diffracted component φD . The law of157
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conservation of mass requires φ to satisfy the Laplace equation throughout the fluid domain,158
which can be expressed as159

∇2φ +
∂2φ

∂z2 = 0, −∞ < x < +∞, −b 6 y 6 b, −H 6 z 6 0. (2.3)160

where ∇2 is the two-dimensional Laplacian on O − xy plane. Here, the ice sheet is modelled161
as a thin elastic plate. Then the boundary condition on the ice sheet can be written as162 (

L∇4 − miω
2 + ρg

) ∂φ
∂z
− ρω2φ = 0, z = 0, (2.4)163

where L = Eh3
i /[12(1 − ν2)] represents the effective flexural rigidity of the ice sheet, E and164

ν denote its Young’s modulus and Poisson’s ratio respectively. mi = ρihi in (2.4) represents165
the mass per unit aera of the ice sheet. g is the acceleration due to gravity. The impermeable166
condition on the body surface SB can be expressed as167

∂φ

∂n
= 0, on SB, (2.5)168

where n = (nx, ny, 0) is the unit normal vector of SB pointing into the body. The impermeable169
conditions are also enforced on the rigid side walls and the bottom of the channel, or170

∂φ

∂y
= 0, y = ±b, (2.6)171

172

∂φ

∂z
= 0, z = −H. (2.7)173

At far field, the radiation condition should be imposed to ensure that the disturbed wave174
propagates outwards. In addition to all these above, edge conditions should be imposed at175
the intersections of the ice sheet with two channel walls and with the vertical cylinder. In176
the present work, without loss of generality, case studies are made for the clamped and free177
edges. The former requires zero deflection and slope at the intersection line, while the latter178
requires zero bending moment and Kirchhoff shear force. Following the formulas given in179
Timoshenko & Woinowsky-Krieger (1959), the edge conditions at y = ±b, z = 0 can be180
expressed as181

∂φ

∂z
= 0,

∂2φ

∂y∂z
= 0, Clamped

∂3φ

∂y2∂z
+ ν

∂3φ

∂x2∂z
= 0,

∂4φ

∂y3∂z
+ (2 − ν)

∂4φ

∂x2∂y∂z
= 0, Free

 . (2.8)182

The edge conditions at the intersection line of the ice sheet and the surface of the vertical183
cylinder can be written as184

∂φ

∂z
= 0,

∂2φ

∂r∂z
= 0, Clamped

B

(
∂φ

∂z

)
= 0, S

(
∂φ

∂z

)
= 0, Free

 , (2.9)185
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where the operator B and S are defined as186

B = ∇2 −
1 − ν

a

(
1
a
∂2

∂θ2 +
∂

∂r

)
S =

∂

∂r
∇2 +

1 − ν
a2

(
∂3

∂r∂θ2 −
1
a
∂2

∂θ2

)

, (2.10)187

and (r, θ) is defined in (2.1).188

3. Solution procedure189

3.1. Green function for a channel fully covered by an ice sheet190

To solve the boundary value problem, theGreen functionG(x, y, z; x0, y0, z0) is first derived,191
which is the velocity potential at point (x, y, z) due to a single source at point (x0, y0, z0). G192
should satisfy the following equation in the entire fluid domain,193

∇2G +
∂2G
∂z2 = 2πδ(x − x0)δ(y − y0)δ(z − z0), (3.1)194

where δ(x) denotes the Dirac delta-function. The same boundary conditions in (2.4), (2.6)195
∼ (2.10) and at far field also need to be satisfied by G. To obtain the solution, we may apply196
the Fourier transform along the x−direction,197

Ĝ =
1

2π

∫ +∞

−∞

Ge−ikxdx (3.2)198

to (3.1). The governing equation becomes199

− k2Ĝ +
∂2Ĝ
∂y2 +

∂2Ĝ
∂z2 = e−ikx0δ(y − y0)δ(z − z0). (3.3)200

To derive the solution of (3.3), Ĝ can be expressed as201

Ĝ = Ĝp + Ĝg, (3.4)202

where Ĝp is a particular solution of (3.3) satisfying conditions in (2.4) and (2.7), or the203

solution corresponding to the problem in unbounded ocean with an ice cover, while Ĝg204
is a general solution of (3.3) with zero right-hand side, which is introduced to satisfy the205
remaining boundary conditions. Based on the procedure of Wehausen & Laitone (1960), Ĝp206
can be derived through the Fourier transform method as207

Ĝp = −
e−ikx0

2π

∫ +∞

−∞

e−iσ |y−y0 | f (α, z>, z<)
αK(α, ω)

dσ, (3.5)208

where209

f (α, z>, z<) =
[(

Lα4 + ρg − miω
2
)
α cosh(αz>) + ρω2 sinh(αz>)

]
coshα(z< + H), (3.6)210

211

K(α, ω) =
(
Lα4 + ρg − miω

2
)
α sinhαH − ρω2 coshαH, (3.7)212

with α = (σ2 + k2)1/2, z> and z< are defined as z> = max{z, z0} and z< = min{z, z0}. Here,213
we may denote the roots of K(α, ω) = 0 as α = ±κm (m = −2,−1, 0, ...), where κ0 is the214
purely positive real root, κ−2 and κ−1 are two complex roots with positive imaginary part, and215
κm (m = 1, 2, 3, ...) are an infinite number of purely positive imaginary roots. When κ2

0 > k2,216
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there will be singularities in the integrand of (3.5) at σ = ±(κ2
0 − k2)1/2. To satisfy the217

outgoing wave radiation condition at far field, the integration path should pass under (over)218
the poles at σ = −(κ2

0 − k2)1/2 (σ = +(κ2
0 − k2)1/2). In fact, if we deform the integration path219

in (3.5) downwards into the lower half of the complex-plane and use the residue theorem,220
Ĝp can be further expressed in a form of eigenfunction series as221

Ĝp = ie−ikx0

+∞∑
m=−2

e−iσm |y−y0 |ψm(z)ψm(z0)

2σmQm
, (3.8)222

where223

ψm(z) =
cosh κm(z + H)

cosh κmH
, (3.9)224

225

Qm =
2κmH + sinh 2κmH

4κm cosh2 κmH
+

2Lκ4
m

ρω2 tanh2 κmH, (3.10)226

and σm = −i(k2 − κ2
m)

1/2. The details of the derivation of (3.8) can be found in Appendix A.227
The general solution Ĝg can be determined through a variable separation procedure (Li228

et al. 2020)229

Ĝg(y, z) = e−ikx0

+∞∑
m=−2

ϕm(y)ψm(z), (3.11)230

where ϕm(y) is governed by231

d2ϕm

dy2 + σ
2
mϕm = 0, −b 6 y 6 b. (3.12)232

To establish the boundary conditions of ϕm(y), an orthogonal inner product proposed by233
(Sahoo et al. 2001)234

〈ψm, ψm̃〉 =

∫ 0

−H

ψmψm̃dz +
L
ρω2

(
dψm

dz
d3ψm̃

dz3 +
d3ψm

dz3
dψm̃

dz

)����
z=0
= δmm̃Qm (3.13)235

is used here, where δi j denotes the Kronecker delta function. Therefore,236 〈
∂Ĝ
∂y

, ψm̃

〉����
y=±b

=

∫ 0

−H

∂Ĝ
∂y

����
y=±b

ψm̃dz +
L
ρω2

(
∂2Ĝ
∂y∂z

d3ψm̃

dz3 +
∂4Ĝ
∂y∂z3

dψm̃

dz

)����
y=±b,z=0

= e−ikx0Qm̃

[
dϕm̃
dy

����
y=±b

±
e−iσm̃(b∓y0)ψm̃(z0)

2Qm̃

]
.

(3.14)237
Applying the impermeable condition in (2.6) to (3.14), and letting238

∂2Ĝ
∂y∂z

����
y=±b,z=0

=
e−ikx0(β3 ± β1)

2
and

∂4Ĝ
∂y∂z3

����
y=±b,z=0

=
e−ikx0(β4 ± β2)

2
, (3.15)239

where βj ( j = 1 ∼ 4) are four unknown coefficients to be determined from the edge conditions240
on channel walls, we have241

dϕm
dy

����
y=±b

=
Lκm tanh κmH

2ρω2Qm
×

[
κ2
m(β3 ± β1) + (β4 ± β2)

]
∓

e−iσm(b∓y0)ψm(z0)

2Qm
. (3.16)242

Based on (3.12) and (3.16), ϕm can be found as243

ϕm(y) = ϕ
(1)
m (y) + ϕ

(2)
m (y), (3.17)244
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where245

ϕ
(1)
m (y) =

ψm(z0)

Qm
×

[
cosσm(y + y0) + e−2iσmb cosσm(y − y0)

2σm sin 2σmb

]
(3.18a)246

247

ϕ
(2)
m (y) = Cm cosσmy + Dm sinσmy, (3.18b)248

with249

Cm = −
L
ρω2 ×

tanh κmH
Qmσm sinσmb

×

(
κ3
mβ1 + κmβ2

)
, (3.19a)250

251

Dm =
L
ρω2 ×

tanh κmH
Qmσm cosσmb

×

(
κ3
mβ3 + κmβ4

)
. (3.19b)252

In fact, it can be seen from (3.18) and 3.19 that, ϕ(1)m is introduced to satisfy the impermeable253

condition on the channel walls, while ϕ(2)m is introduced for edge conditions at y = ±b &254
z = 0. To obtain βj ( j = 1 ∼ 4), we may apply the edge conditions given in (2.8) to Ĝ, and255
use (3.4), (3.8), (3.11) and (3.17) ∼ (3.19). A system of linear equations of the following256
form can be established257 

A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44



β1
β2
β3
β4

 =


B1
B2
B3
B4

 , (3.20)258

where the expression of elements Ai j , Bj and the solution βj (i, j = 1 ∼ 4) are given in259

Appendix B. Substituting βj in (B 8) and (B 9) into (3.18b) and using (B 1) and (B 3), ϕ(2)m260
can be written as261

ϕ
(2)
m (y) =

+∞∑
m′=−2

ImIm′ψm′(z0)

QmQm′

[
cosσmy cosσm′y0

FS(k, ω) sinσmb sinσm′b
+

sinσmy sinσm′y0

FA(k, ω) cosσmb cosσm′b

]
,

(3.21)262

where263

Im(k) = ζm(k) ×
κm tanh κmH

σm
, (3.22)264

265

FS(k, ω) = −2
+∞∑

m=−2

κ2
m tanh2 κmH

Qmσm
×

ζ2
m(k)

tanσmb
, (3.23a)266

267

FA(k, ω) = 2
+∞∑

m=−2

κ2
m tanh2 κmH

Qmσm
×

ζ2
m(k)

cotσmb
, (3.23b)268

and269

ζm(k) =

{
1 Clamped-Clamped

σ2
m(k) + νk2 Free-Free

. (3.24)270

Once Ĝp and Ĝg are found, the Green function G can be obtained by performing the inverse271
Fourier transform. Using (e.g. Linton et al. (1992))272 ∫ +∞

−∞

eik(x−x0)−iσm |y−y0 |

σm
dk = −πH (1)

0 (κmR), (3.25)273
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where R =
[
(x − x0)

2 + (y − y0)
2]1/2

H (1)
n denotes the n−th order Hankel function of the274

first kind. We have the Green function275

G(x, y, z; x0, y0, z0) = −
iπ
2

+∞∑
m=−2

ψm(z)ψm(z0)

Qm
H (1)

0 (κmR)

+

+∞∑
m=−2

ψm(z)ψm(z0)

Qm

∫ +∞

0

[
cosσm(y + y0) + e−2iσmb cosσm(y − y0)

σm sin 2σmb

]
cos k(x − x0)dk

+

+∞∑
m=−2

+∞∑
m′=−2

2ψm(z)ψm′(z0)

QmQm′

∫
L

ImIm′


cosσmy cosσm′y0

FS(k, ω) sinσmb sinσm′b

+
sinσmy sinσm′y0

FA(k, ω) cosσmb cosσm′b

 cos k(x − x0)dk .

(3.26)276
In (3.26), there will be singularities in the integrand when FS(k j, ω) = 0 or FA(k j, ω) = 0277
( j = 1, 2, ..., Ns), where k j denotes all the corresponding purely positive real roots with k1 <278
k2 < ... < kNs , and Ns is the number of roots. To satisfy the radiation condition at far field,279
which requires the disturbed waves to propagate away from the source, the integration path280
L in (3.26) from 0 to +∞ should pass over all the poles at k j . In fact, FS(k, ω)×FA(k, ω) = 0281
corresponds to the dispersion equation (Ren et al. 2020), or relationship betweenwave number282
and frequency for the propagating wave in the channel. Furthermore, it can be observed283
(3.26) that FS(k, ω) is combined with cosσmy, which means that FS(k j, ω) corresponds to a284
symmetric progressing wave about y = 0 with wavenumber k j , while FA(k, ω) with sinσmy285
corresponds to anti-symmetric waves.286

3.2. The velocity potential of the incident wave287

For the problems in the free surface channel, one form of the incident wave could be288
assumed as two-dimensional along the channel length and has no transverse variation.289
However, in the ice-covered channel, such a form is not possible due to the physical constraints290
at the ice sheet edges. The propagating wave will be always three-dimensional (Ren et al.291
2020), and there is always variation in transverse direction. In fact, there is an infinite number292
of modes in the y− direction and all these modes are coupled. Here when the edge conditions293
on channel walls are the same, we may consider an incident wave symmetric about y = 0.294
Following a similar procedure of solving the Green function shown above. φI can be obtained295
by finding the non-trivial solution of the homogeneous problem, which provides296

φI = −i
Ag

ωχ(λ)
× eiλ(x−xc ) ×

+∞∑
m=−2

Im(λ)ψm(z)
Qm

cos[σm(λ)y]

sin[σm(λ)b]
, (3.27)297

where A is a parameter related to the amplitude of the incident wave, σm(λ) = −i(λ2− κ2
m)

1/2,298
λ is the wave number along x−direction, or the solution of the dispersion equation which299
also requires FS(λ, ω) = 0. Similar to the problem in free surface channel, λ is taken as the300
largest positive real root here, or λ = kNs . χ(λ) in (3.27) can be expressed as301

χ(λ) =
1

κ0 tanh κ0H

+∞∑
m=−2

Im(λ)κm tanh κmH
Qm sin[σm(λ)b]

. (3.28)302

The ice sheet deflection due to incident wave can be obtained from ηI = −
i
ω
∂φI

∂z

���
z=0

. Then,303

on y = 0, we have304

ηI (x, 0) = −
Ag
ω
× κ0 tanh κ0H × eiλ(x−xc ). (3.29)305
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It is interesting to see that along the centre line of the tank, the expression for the incident306
wave is similar to that in unbounded ocean given in Ren et al. (2018b).307

3.3. Solution through the source distribution method308

Once the Green function is derived, the velocity potential can be determined from a309
boundary integral equation. For the problem of wave diffraction by a vertical cylinder in310
a free surface channel, the boundary integral equation can be directly established through311
distributing sources over the body surface (e.g. Linton et al. (1992)). However, when there312
is an ice sheet, the integral equation has to be re-derived, and the edge conditions must be313
imposed. The detailed derivation is given in Appendix C. In the result, there is an extra line314
integral along the edge L between the body surface and ice sheet (see (C 3)), which contains315

terms ∂4φD

∂n∂z3 and ∂2φD

∂n∂z . This similar to that in Ren et al. (2018a), However, their procedure316

becomes difficult here due to the presence of the channel walls and therefore a different one317
is introduced here. From the derivation given in Appendix C, using (C 9) and the symmetric318
property of the Green function, or G(x, y, z; x0, y0, z0) = G(x0, y0, z0; x, y, z), we have319

φD(x, y, z) = a
∮
L

〈G(x, y, z; x0, y0, z0),Ψ(x0, y0, z0)〉 dθ0. (3.30)320

where x0 − xc = a sin θ0 and y0 − yc = a cos θ0, the operator <> is defined in (3.13), and Ψ321
is the strength of the source distributed on the body surface. To obtain φD , we may expand322
Ψ into a double series as323

Ψ(a, θ0, z0) =
1

2πa

+∞∑
n=−∞

+∞∑
m=−2

bn,m
QmJn(κma)

× ψm(z0)e−inθ0, (3.31)324

where bn,m are unknown coefficients, Jn denotes the n−th order Bessel function of the first325
kind. The Green function can also be expressed in the cylindrical coordinate system. Similar326
to Wu (1998), we may define327

k = κm cos γm and σm = κm sin γm. (3.32)328

Using the following two identities (Abramowitz & Stegun 1970)329

H (1)
0 (κmR) =

+∞∑
n=−∞

H (1)
n (κmr)Jn(κma)ein(θ0−θ), (3.33a)330

331

ei[k(x−xc )±σm(y−yc )] =

+∞∑
n=−∞

Jn(κmr)ein(θ±γm), (3.33b)332

(3.26) can be transferred to coordinates (r, θ, z) and (a, θ0, z0) as333

G(r, θ, z; a, θ0, z0) =

−
iπ
2

n=+∞∑
n=−∞

+∞∑
m=−2

ψm(z)ψm(z0)

Qm
H (1)

n (κmr)Jn(κma)ein(θ0−θ)

+

+∞∑
n=−∞

+∞∑
n′=−∞

+∞∑
m=−2

Cn,n′,mψm(z)ψm(z0)Jn′(κmr)Jn(κma)ei(n′θ+nθ0)

+

+∞∑
n=−∞

+∞∑
n′=−∞

+∞∑
m=−2

+∞∑
m′=−2

Dn,n′,m,m′ψm′(z)ψm(z0)Jn′(κm′r)Jn(κma)ei(n′θ+nθ0),

(3.34)334

Rapids articles must not exceed this page length
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where335

Cn,n′,m =
1

Qm

∫ +∞

0

Gn,n′,m + Gn′,n,m

2σm sin 2σmb
dk, (3.35a)336

337

Dn,n′,m,m′ =
1

QmQm′

∫
L

ImIm′


(−1)n′En,mE−n′,m′ + (−1)nE−n,mEn′,m′

FS(k, ω) sinσmb sinσm′b

+
(−1)n′Fn,mF−n′,m′ + (−1)nF−n,mFn′,m′

FA(k, ω) cosσmb cosσm′b


dk, (3.35b)338

with339

Gn,n′,m(k) = (−1)n
′

cos [2σmyc + (n − n′)γm] + e−2iσmb(−1)n
′

cos(n + n′)γm, (3.36a)340
341

En,m(k) = cos(σmyc + nγm), (3.36b)342
343

Fn,m(k) = sin(σmyc + nγm). (3.36c)344

Substituting (3.31) and (3.34) into (3.30), we obtain345

φD(r, θ, z) = −
iπ
2

+∞∑
n=−∞

+∞∑
m=−2

bn,m
Qm

H (1)
n (κmr)ψm(z)e−inθ

+

+∞∑
n=−∞

+∞∑
n′=−∞

+∞∑
m=−2

bn,mCn,n′,mJn′(κmr)ψm(z)ein′θ

+

+∞∑
n=−∞

+∞∑
n′=−∞

+∞∑
m=−2

+∞∑
m′=−2

bn,mDn,n′,m,m′Jn′(κm′r)ψm′(z)ein′θ .

(3.37)346

Similarly, φI can be also expressed in the cylindrical coordinate system by applying (3.33b)347
to (3.27). This gives,348

φI (r, θ, z) = −
iAg
ωχ(λ)

+∞∑
n=−∞

+∞∑
m=−2

Im(λ)En,m(λ)

Qm sin[σm(λ)b]
Jn(κmr)ψm(z)einθ . (3.38)349

To obtain bn,m, applying the inner product in (3.13) to ∂φ/∂r and ψm̃ on r = a, we have350 〈
∂φ

∂r
, ψm̃

〉����
r=a

=

∫ 0

−H

〈
∂φ

∂r
ψm̃

〉����
r=a

dz +
L
ρω2

(
∂2φ

∂r∂z
d3ψm̃

dz3 +
∂4φ

∂r∂z3
dψm̃

dz

)����
r=a,z=0

.

(3.39)351
Substituting the impermeable condition on r = a (2.5) into (3.39) and letting352

∂2φ

∂r∂z

����
r=a,z=0

= −

+∞∑
n=−∞

cneinθ and
∂4φ

∂r∂z3

����
r=a,z=0

= −

+∞∑
n=−∞

dneinθ, (3.40)353

a system of linear equations of the following form can be obtained354

iπ
2
(−1)n+1H (1)′

n (κma)
QmJ

′
n (κma)

b−n,m +
+∞∑

n′=−∞

Cn′,n,mbn′,m +
+∞∑

n′=−∞

+∞∑
m′=−2

Dn′,n,m′,mbn′,m′

+
L tanh κmH

ρω2QmJ
′
n (κma)

(κ2
mcn + dn) =

iAg
ωχ(λ)

Im(λ)En,m(λ)

Qm sin[σm(λ)b]
,

(3.41)355

where −∞ < n < +∞ and −2 6 m < +∞, H (1)′
n (z) and J ′n (z) denote the derivatives of356

H (1)
n (z) and Jn(z), respectively. In addition to the imposed impermeable condition on the357
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body surface, the edge conditions also need to be applied to φ. Here, we may give an example358
of the clamped edge at the intersection line of the ice sheet and the body surface L, and359
other conditions can be treated in a similar way. Substituting (3.37) and (3.38) into (2.9), the360
condition of zero deflection provides361

iπ
2

+∞∑
m=−2

(−1)n+1H (1)
n (κma)κm tanh κmH

Qm
b−n,m

+

+∞∑
n′=−∞

+∞∑
m=−2

Cn′,n,mJn(κma)bn′,mκm tanh κmH

+

+∞∑
n′=−∞

+∞∑
m=−2

+∞∑
m′=−2

Dn′,n,m′,mJn(κma)bn′,m′κm tanh κmH

=
iAg
ωχ(λ)

+∞∑
m=−2

Im(λ)En,m(λ)Jn(κma)κm tanh κmH
Qm sin[σm(λ)b]

, −∞ < n < +∞.

(3.42)362

The condition of zero slope gives363

cn = 0, −∞ < n < +∞. (3.43)364

In the numerical computation, the infinite series in (3.41) ∼ (3.42) are truncated at n = ±N365
and m = M , respectively. We have (2N + 1)(M + 5) unknowns in total, (2N + 1)(M + 3)366
of which are bn,m, and (2N + 1) are cn and dn. From (3.41), we obtain (2N + 1)(M + 3)367
equations, while (3.42) and (3.43) provide additional 2 × (2N + 1) equations. Thus, there is368
a total of (2N + 1)(M + 5) equations, which is the same as the number of unknowns.369

After the coefficients bn,m, cn and dn are found, substituting (3.41) into (3.37) and (3.38),370
the total velocity potential φ can be further expressed as371

φ(r, θ, z) = −
iπ
2

+∞∑
n=−∞

+∞∑
m=−2

bn,m
Qm

[
H (1)

n (κmr)
Jn(κmr)

−
H (1)′

n (κma)
J ′n (κma)

]
Jn(κmr)ψm(z)e−inθ

−
L
ρω2

+∞∑
n=−∞

+∞∑
m=−2

(κ2
mcn + dn) tanh κmH

Qm

Jn(κmr)
J ′n (κma)

ψm(z)einθ .

(3.44)372

3.4. Hydrodynamic forces and vertical shear forces on the vertical cylinder373

Once the velocity potential is found, the hydrodynamic forces on the vertical cylinder can374
be obtained through the integration of hydrodynamic pressure over the body surface, which375
can be expressed as376

Fj = iωρ
∬

SB

φnjdS, j = 1 ∼ 4, (3.45)377

where j = 1, 2 correspond to the forces Fx and Fy , and j = 3, 4 correspond to the moments378
Mx and My about the bottom of the channel on z = −H. (n1, n2, n3, n4) = (nx, ny,−(z +379
H)ny, (z + H)nx). For the present case of a vertical circular cylinder, we have nx = − sin θ =380
−(eiθ − e−iθ )/2i and ny = − cos θ = −(eiθ + e−iθ )/2. Substituting them and (3.44) into (3.45),381
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we obtain382

[
Fx

Fy

]
= πωρa ×

[
1 −1
i i

]
×


1
a

+∞∑
m=−2

tanh κmH
κ2
mQmJ

′
1 (κma)

×

[
b1,m
−b−1,m

]
+

L
ρω2

+∞∑
m=−2

J1(κma) tanh2 κmH
κmQmJ

′
1 (κma)

×

[
κ2
mc−1 + d−1
κ2
mc1 + d1

]

,

(3.46a)383384 [
Mx

My

]
= −πωρa ×

[
i i
−1 1

]

×


1
a

+∞∑
m=−2

κmH sinh κmH − cosh κmH + 1
J ′1 (κma)κ3

mQm cosh κmH
×

[
b1,m
−b−1,m

]
+

L
ρω2

+∞∑
m=−2

J1(κma) (κmH sinh κmH − cosh κmH + 1)
J ′1 (κma)κ2

mQm cosh κmH coth κmH
×

[
κ2
mc−1 + d−1
κ2
mc1 + d1

]

.

(3.46b)385
When the ice sheet is clamped to the surface of the cylinder, there will be a vertical shear386
force on the body. The total vertical shear force V can be obtained from387

V =
∫ 2π

0
τ(θ)adθ, (3.47)388

where τ(θ) is the shear stress distribution along the intersection line, which can be expressed389
as (Ugural 1999)390

τ(θ) = −i
L
ω

∂

∂r

(
∇2 ∂φ

∂z

)����
r=a,z=0

= i
L
ω

∂4φ

∂r∂z3

����
r=a,z=0

= −i
L
ω

+∞∑
n=−∞

dneinθ . (3.48)391

Substituting (3.48) into (3.47), we have392

V = −i
2πaL
ω

d0. (3.49)393

3.5. Behaviour of the solution at the natural frequencies394

For a given ω, the residual in (3.26) at a singularity FS(k, ω) = 0 (FA(k, ω) = 0) can be395
obtained from the standard method in complex analysis. The result contains F ′S (k, ω) = 0396
(F ′A(k, ω) = 0) in the denominator, where the prime represents the derivative with respect to397
k. At someω,F ′S (k, ω) (F

′
A(k, ω)) is also equal to zerowhenFS(k, ω) = 0 (FA(k, ω) = 0), and398

then the Green function G will be infinite. Physically, ω in this case is the natural frequency399
of the ice-covered channel. In fact, from (3.23), k = 0 is always the solution of F ′S (k, ω) = 0400
(F ′A(k, ω) = 0). At a given ω, if we further have F ′S (k, ω) = 0 (F ′A(k, ω) = 0), this ω will be401

a natural frequency. This is similar to κ0 = iπ/2b and ω =
[
iπ
2b tanh

(
iπH
2b

) ]1/2 (i = 1, 2, ...)402
in the free surface channel (Linton et al. 1992; Wu 1998). The ice-covered channel also has403

an infinite number of natural frequencies, which are denoted as ω(i)c (i = 1, 2, ...) here, with404

ω
(1)
c < ω

(2)
c < ω

(3)
c < ... In particular, even i corresponds to FS(0, ω(i)c ) = 0, while odd i405

corresponds to FA(0, ω(i)c ) = 0. The results near the natural frequencies can change rapidly.406
Here, we shall show that even though the Green function is infinite at one of the natural407
frequencies, the velocity potential φ and hydrodynamic force may remain finite. We may408
consider the even modes 2i as an example and the odd modes 2i − 1 can be done in a similar409
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way. When ω→ ω
(2i)
c , FS(k, ω) at k → 0 can be expressed asymptotically as410

FS(k, ω) → FS,asy(k, ω) = FS(0, ω) +
1
2
F ′′S (0, ω)k

2, k → 0, (3.50)411

where FS(0, ω) → 0± when ω → ω
(2i)
c + 0±, F ′′S (0, ω) < 0, which can be confirmed412

from (3.23a). For the integrand as G(k)/FS(k, ω) in (3.35b), we may re-express it as413 [
G(k)/FS(k, ω) − G(0)/FS,asy(k, ω)

]
+ G(0)/FS,asy(k, ω). Then the first term is non-414

singular, and the second term can be integrated explicitly. Dn,n′,m,m′ in G can be written415
as416

Dn,n′,m,m′ =
2π
∆

Im(0)Im′(0)En,m(0)En′,m′(0)
QmQm′ sin κmb sin κm′b

+ D̃n,n′,m,m′ +O(∆), ∆→ 0. (3.51)417

where∆ = µ×|2F ′′S (0, ω)FS(0, ω)|, µ is a constant depending on whetherω
(2i)
c is approached418

from the left- or right-hand side. When ω → ω
(2i)
c + 0−, µ = 1 and the singular term in419

Dn,n′,m,m′ is from the principal value integration. When ω → ω
(2i)
c + 0+, µ = −i and the420

singular term is from the residue term. D̃n,n′,m,m′ ∼ O(1) in (3.51) is the leading term of421
the remaining regular part of the Green function. To analyse the behaviour of the velocity422
potential ϕ at natural frequencies, we may employ a similar procedure used by Liu & Yue423
(1993) for the forward speed problem in free surface flow. Substituting (3.51) into (3.41) and424
rearrange the equation, we obtain425

b−n,m +
4i
∆
× Λ ×

(−1)nJ ′n (κma)Im(0)En,m(0)

H (1)′
n (κma) sin κmb

= ξn,m +O(∆). (3.52)426

where427

Λ =

+∞∑
n′=−∞

+∞∑
m′=−2

Im′(0)En′,m′(0)
Qm′ sin κm′b

bn′,m′, (3.53)428

429

ξn,m =
2i(−1)nJ ′n (κma)

πH (1)′
n (κma)

×


iAg
ωχ(λ)

Im(λ)En,m(λ)

Qm sin [σm(λ)b]
−

+∞∑
n′=−∞

Cn′,n,mbn′,m

−

+∞∑
n′=−∞

+∞∑
m′=−2

D̃n,n′,m,m′bn′,m′ +
L tanh κmH

ρω2QmJ
′
n (κma)

dn


. (3.54)430

In (3.53), cn = 0 in (3.43). Multiplying (3.41) by κm tanh κmH, taking summation with431
respect to m from −2 to +∞ and subtracting (3.42) from the results, dn can be further432
expressed by bn,m as433

dn = −
ρω2

La
×

∑+∞
m=−2

tanh κmH
Qm

×
b−n,m
J′−n(κma)∑+∞

m=−2
κm tanh2 κmH

Qm
×
Jn(κma)
Jn′ (κma)

, (3.55)434

which indicates that dn has the same magnitude as bn,m. Substituting (3.52) into (3.53), Λ435
can be represented as436

Λ =
∆

∆ + 4Γi
×

+∞∑
n′=−∞

+∞∑
m′=−2

(−1)n′ Im′(0)En′,m′(0)
Qm′ sin κm′b

ξn′,m′ +O(∆2), (3.56)437

where438

Γ =

+∞∑
n=−∞

+∞∑
m=−2

I2
m(0)E2

n,m(0)
Qm sin2 κmb

×
J ′n (κma)

H (1)′
n (κma)

. (3.57)439
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Figure 2: Dispersion relations of the ice-covered channel. (a) Clamped-Clamped edges;
(b) Free-Free edges. (b/H = 2, hi/H = 1/50).

At the natural frequency, we shall first check whether Γ = 0. When Γ , 0, we may substitute440
(3.57) back into (3.52) and let ∆ = 0, a modified matrix equation can then be obtained as441

b−n,m +
1
Γ

(−1)nJ ′n (κma)Im(0)En,m(0)

H (1)′
n (κma) sin κmb

+∞∑
n′=−∞

+∞∑
m′=−2

(−1)n′ Im′(0)En′,m′(0)
Qm′ sin κm′b

ξn′,m′ = ξn,m.

(3.58)442
This equation is not singular and can be used at natural frequencies. It can be seen from (3.43),443
(3.55) and (3.58) that the solutions bn,m, cn and dn are bounded at the natural frequencies.444
Furthermore, together with (3.44), (3.46) and (3.49), the velocity potential φ and forces are445
also non-singular at natural frequencies. However, whether Γ could be 0 in some cases and446
the corresponding solution could be singular need further investigation.447

4. Numerical results and discussion448

In the following calculations, the typical physical parameters of the ice sheet and the fluid449
are chosen to be the same as those in Ren et al. (2020), i.e.450

ρi = 917 kg m−3, E = 4.2 × 109 N m−2, ν = 0.3

ρ = 1000 kg m−3, g = 9.8 m s−2, H = 5 m

}
. (4.1)451

It should be noted that all the variables below are presented in non-dimensionalized forms.452
The numerical results are obtained by truncating the infinite series in (3.41) ∼ (3.43) at a453
finite numbers, namely N = 8 and M = 8, which has been found to provide converged results.454

4.1. Verification of the dispersion equation455

As discussed in Section 3.1, FS(k, ω) × FA(k, ω) = 0 corresponds to the dispersion456
relation for propagating waves in an ice-covered channel. To verify this, a comparison with457
the dispersion relation obtained by Ren et al. (2020) through a different approach is presented458
in figure 2, and a very good agreement can be found. For a given k, Ren et al. (2020) pointed459
out that there is an infinite number of solution ω. Here, we may denote each root ω as460
ωi(k) (i = 0, 1, 2, ...) with ω0(k) < ω1(k) < ω2(k) < ..., where the points on curves ω2i(k)461
(i = 0, 1, 2, ...) are solutions of FS(k, ω) = 0 and correspond to waves symmetric about462
y = 0, while those on ω2i+1(k) are the roots of FA(k, ω) = 0 and correspond to waves463
anti-symmetric about y = 0. As discussed in Section 3.5, the points on the vertical axis or464

ωi(0) = ω(i)c (i = 1, 2, 3, ...) are the natural frequencies of the channel.465
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Figure 2 verifies the present method and equation numerically. In fact, we can further show466
that although the present expression for dispersion relation is different from that in Ren et al.467
(2020), they are mathematically identical. To do that, we may first construct a function of the468
following form469

h(α) =
α2 sinhαH

K(α, ω)
×

ζ2(α)

σ tanσb
(4.2)470

in the complex plane α, where σ = −i(k2 − α2)1/2 and471

ζ(α) =

{
1, Clamped-Clamped

σ2 + νk2 Free-Free
. (4.3)472

Consider the integral of h(α) along a circle CR of radius R → +∞ and centred at the473
origin in the complex plane, and applying the residue theorem at singularities of K(α, ω) and474
σ tanhσb, we have475

1
2πi

∮
CR

h(α)dα = 2

[
+∞∑

m=−2

κ2
m sinh κmH
K ′(κm, ω)

ζ2
m(k)

σm tanσmb
+

+∞∑
n=0

α2n sinhα2nH
K(α2n, ω)

ζ2(α2n)

b(1 + δn0)

]
,

(4.4)476
where αn = (k2 + n2π2/4b2)1/2. When R → +∞, |h(α)| ∼ O(1/R4) for clamped-clamped477
edges and |h(α)| ∼ O(1/R2) for free-free edges. Thus, the integal in (4.4) tends to zero. Then,478
using (A 4) and (3.23a), we further obtain479

FS(K, ω) = −2
+∞∑

m=−2

κ2
m tanh2 κmH

Qmσm

ζ2
m(k)

tanσmb
=

4ρω2

b

+∞∑
n=0

α2n sinhα2nH
K(α2n, ω)

ζ2(α2n)

(1 + δn0)
. (4.5)480

Similarly, FA(K, ω) in (3.23b) can be also expressed as481

FA(K, ω) = 2
+∞∑

m=−2

κ2
m tanh2 κmH

Qmσm

ζ2
m(k)

cotσmb
=

4ρω2

b

+∞∑
n=0

α2n+1 sinhα2n+1H
K(α2n+1, ω)

ζ2(α2n+1).

(4.6)482
The system of linear equations in (2.24) in Ren et al. (2020) can be split into those for483
symmetric and anti-symmetric modes respectively. Noticing coefficient ∆n in (2.20a) in484
their work can be linked to K(α, ω) in (3.7) here as ∆n = −16b4K(αn, ω)/n4π4(n > 0),485
through some algebra, it can be shown that det(A) = 0 in (2.25) of Ren et al. (2020) gives the486
same series as those on the right-hand side of (4.5) and (4.6). The above analysis shows that487
the two different methods give the same dispersion relation, while the present formulation in488
(4.5) and (4.6) are in a much neater and direct form. It should also be noted that other edge489
conditions can be done in a similar way.490

4.2. The Natural frequencies at different channel widths and ice sheet thickness491

It may be also interesting to investigate how the natural frequencies ω(i)c vary with the492

channel width b and ice sheet thickness hi . ω(i)c (i = 1 ∼ 4) under free-free edges are given in493

figure 3 as an example. It can be seen from figure 3(a) that all the ω(i)c decrease as b increase.494

At sufficiently large values of b/H, all the ω(i)c (i = 1 ∼ 4) will tend to zero. The natural495
frequencies at different hi are given in figure 3(b) and values at hi/H = 0 correspond to496

those of the free surface channel. It can be observed that ω(1)c is hardly affected by hi . The497

effect of ice sheet thickness on ω(i)c becomes more apparent when i increases.498
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Figure 3: Natural frequencies of the ice-covered channel under free-free edges. (a)
variation with b at hi/H = 1/50. (b) variation with hi at b/H = 2.

4.3. Forces on a cylinder standing at the centre of the channel499

Hydroelastic wave diffraction by a vertical circular cylinder standing at the centre of the500
channel is considered in this section. Since the problem is symmetric about y = 0, we have501
bn,m = b−n,m in (3.37). In such a case, the infinite series in (3.41) ∼ (3.43) about n and n′502
only need to be considered from 0 to +∞. Also, the coefficients Cn,n′,m and Dn,n′,m,m′ given503
in (3.35) can be further simplified as504

Cn,n′,m =
(−1)n + (−1)n′

Qm(1 + δn0)(1 + δn′0)

∫ +∞

0

e−iσmb cos nγm cos n′γm
σm sinσmb

dk, (4.7a)505

506

Dn,n′,m,m′ =
2
[
(−1)n + (−1)n′

]
QmQm′(1 + δn0)(1 + δn′0)

∫
L

ImIm′ cos nγm cos n′γm′
FS(k, ω) sinσmb sinσm′b

dk . (4.7b)507

As expected, FA(k, ω) does not appear here. Its singularities have no effect or there will508
be no wave antisymmetric about y = 0. Furthermore, noticing C2n,2n′+1,m = C2n+1,2n′,m =509
D2n,2n′+1,m,m′ = D2n+1,2n′,m,m′ (n, n′ = 0, 1, 2, ...), the unknown coefficients b2n,m, c2n and510
d2n in (3.41) ∼ (3.43) are completely independent to b2n+1,m, c2n+1 and d2n+1.511
We first investigate the hydrodynamic forces and vertical shear force at different channel512

widths when the ice sheet is clamped to the surface of the vertical cylinder. The numerical513
results for wave forces are shown in figure 4, where the black solid lines correspond to forces514
on a single vertical circular cylinder standing in the unbounded ocean with an ice cover,515
which is calculated through the method in Ren et al. (2020) (the same below). F∗x is defined516
as F∗x = Fx/ρga2 A, similarly, M∗y = My/ρga3 A and V∗ = V/ρgaA. When b/a = 5, it517
can be seen that F∗x in two different sets of edge conditions along the tank walls are both518
significantly different from that in the unbounded ice-covered ocean. In particular, as shown519
in figure 4(b) for channels with clamped-clamped edges, a couple of peaks can be observed520
in the curve of F∗x versus κ0a. By contrast, only one obvious peak in the curve given in521
figure 4(a) for free-free edges. As b increases, those peaks decrease and gradually become522
less visible. The curve of F∗x versus κ0a generally shows a variation trend similar to that in523
the unbounded ocean but with a continuous fluctuation, where the amplitude of fluctuation524
becomes smaller as b increases. When b is sufficiently large, the results in both cases tend525
to that in the unbounded ice-covered ocean, which shows the effects from two side walls and526
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Figure 4: Wave forces in x−direction on the cylinder at the centre of the channel with
different widths, when the ice sheet is clamped to the cylinder. (a) Channel with free-free

edges; (b) Channel with clamped-clamped edges. (H/a = 5, hi/a = 1/10).
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Figure 5: Moments in y−direction on the cylinder at the centre of the channel with
different widths, when the ice sheet is clamped to the cylinder. (a) Channel with free-free

edges; (b) Channel with clamped-clamped edges. (H/a = 5, hi/a = 1/10).

edge conditions at y = ±b on the hydrodynamic forces become very insignificant. In addition527
to F∗x , similar phenomenon can be also observed in the curve of M∗y shown in figure 5.528
The results of the vertical shear forces on the cylinder are shown in figure 6. It may seem529

to be a surprise that the variation trend of V∗ versus κ0a is quite different from that of F∗x and530
M∗y given figures 4 and 5. As κ0a increases, V∗ in the unbounded ice-covered ocean varies531
smoothly. However, the results in the ice-covered channel oscillate persistently. In particular,532
rapid changes can be observed when κ0a is close to one of natural frequencies of the channel.533
This rapid change always exists even when b is sufficiently large, which makes the results of534
V∗ always be different from that in the unbounded ice-covered ocean. The difference between535
two neighbouring natural frequencies becomes smaller when b is larger. Correspondingly,536
more oscillatory behaviour of the curves at larger b can be observed in figure 6.537
To explain the differences between the behaviours of F∗x (M

∗
y ) and V∗ when κ0a is near538

a natural frequency, we may have a closer look at behaviour of coefficient Dn,n′,m,m′ in539
(4.7b), which is from the Green function in (3.34). It can be seen from (3.46) and (3.49) that540
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Figure 6: Vertical shear forces on the cylinder at the centre of the channel with different
widths, when the ice sheet is clamped to the cylinder. (a) Channel with free-free edges; (b)

Channel with clamped-clamped edges. (H/a = 5, hi/a = 1/10).

b/a = 10 b/a = 20

i ω
(2i)
c (H/g)1/2 κ0a V∗ ω

(2i)
c (H/g)1/2 κ0a V∗

1 1.267 0.289 2.389 0.720 0.156 0.270
2 3.697 0.568 12.685 1.321 0.300 3.158
3 9.965 0.879 17.550 2.298 0.444 8.372
4 20.775 1.193 21.444 4.119 0.598 12.668
5 36.638 1.506 17.969 6.941 0.754 15.592
6 58.003 1.820 12.025 10.842 0.911 18.762

Table 1: Vertical shear forces at natural frequencies, the ice sheet is clamped to the surface
of cylinder but free-free on two side walls. (H/a = 5, hi/a = 1/10)

F∗x (M
∗
y ) is related to b±1,m, c±1 and d±1, while V∗ is related to d0. As mentioned above, the541

system of linear equations of b2n,m, c2n and d2n are independent of that of b2n+1,m, c2n+1 and542
d2n+1. Thus, F∗x (M

∗
y ) is in fact related only to D2n+1,2n′+1,m,m′ (n, n′ = 0, 1, 2...), while V∗ is543

related only to D2n,2n′,m,m′ . From (4.7b), when ω = ω(2i)c (i = 1, 2, 3...), the residue term of544
D2n+1,2n′+1,m,m′ corresponding to wave component k = 0 gives545

lim
k→0

Im(k)Im′(k) cos(2n + 1)γm cos(2n′ + 1)γm′

F ′
S
(k, ω(2i)c ) sinσmb sinσm′b

= 0, (4.8)546

where γm → π/2 when k → 0 which can be seen from (3.32), and F ′S (k, ω
(2i)
c ) ∼ O(k)547

Thus, D2n+1,2n′+1,m,m′ is bounded at natural frequencies. However, for the residue term of548
D2n,2n′,m,m′ , we obtain549

lim
k→0

Im(k)Im′(k) cos 2nγm cos 2n′γm′

F ′
S
(k, ω(2i)c ) sinσmb sinσm′b

=
(−1)n+n′ Im(0)Im′(0)

sin κmb sin κm′b
1

F ′
S
(0, ω(2i)c )

→ ∞. (4.9)550

This indicates D2n,2n′,m,m′ are singular at natural frequencies. Since the behaviours of551
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conditions. (a) Wave forces; (b) Moment. X and Y in X-Y refer the edge conditions on the

channel walls and cylinder respectively. F: Free edge. C: Clamped edge.
(b/a = 5,H/a = 5, hi/a = 1/10).

D2n,2n′,m,m′ and D2n+1,2n′+1,m,m′ at natural frequencies are different, one is regular and552
the other singular, the behaviours of F∗x (M

∗
y ) and V∗ are also not expected to be the same.553

On the other hand, as shown in Section 3.5, although singular terms existing in the original554
boundary integral equation, it can be modified into a regular equation and the solution φ is555
still finite when Γ , 0. For this case, it is found that Γ is indeed non-zero over the full range556
of κ0a in figure 6. Thus, at the natural frequencies, we may use the modified equation given557
in (3.58) to find the vertical shear force V∗. The results at first several natural frequencies for558
b/a = 10 and 20 are presented in table 1. It is also interesting to see the effect of the edge559
conditions at the channel walls on V∗. When the channel is relatively narrow or b/a = 5560
and 10, significant differences in the curves of V∗ can be observed in figures 6(a) and 6(b),561
which indicates that the effect of edge conditions at the channel walls on V∗ is very strong.562
As b increases, this effect gradually becomes weaker, and the curves in these two cases show563
a closer trend.564
We next consider the cases with different combinations of ice edge conditions on the565

channel walls and on the cylinder surface. The results of F∗x and M∗y are given in figure 7566
as an example. It can be observed that the curves of wave force and moment vary relatively567
smoothly when the ice edge is free both on the cylinder surface and on the two channel walls,568
while there are obvious peaks in the curves of the other three cases. When κ0a is small, the569
influence of edge conditions on F∗x and M∗y is relatively weak, while it is very strong when570
κ0a is relatively large.571
We then consider the hydrodynamic forces at different ice sheet thickness. A comparison572

with the hydrodynamic force in free surface case is given in Fig. 8, where the corresponding573
results are calculated through the procedures given in Linton et al. (1992). In figure 8(a),574
the ice edge is free at all boundaries. When hi/a = 1/10, some difference from the result of575
the free surface case can be observed. As hi decreases, the difference is very much reduced.576
When hi/a = 1/1000, the difference between the two curves becomes hardly visible. By577
contrast, the results in figure 8(b) for the ice edges clamped into all boundaries are quite578
different. F∗x is significantly influenced by hi . There are obvious local peaks in the curve579
of hi/a = 10. These peaks decrease or become hardly visible when hi/a = 100 and 1000.580
Furthermore, even when the ice sheet becomes very thin at hi/a = 1000, there are still some581
visible differences between the results of this case and the free surface case. This indicates582
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Figure 9: Wave forces on the cylinder at various off-centre positions of the channel, edge
conditions: FF-C. (a) Force on x−direction; (b) Force on y−direction.

(b/a = 10,H/a = 5, hi/a = 1/10)

that the cases with free edges may resemble the free surface case better when the ice sheet583
thickness decreases. Similarly phenomenon is also reported by Ren et al. (2020) for the wave584
diffraction problem of multiple circular cylinders in the unbounded ocean with ice cover.585

4.4. Forces on a cylinder standing off centre positions of the channel586

Computations are also carried out to investigate the forces on a vertical cylinder standing587
off centre positions of the channel. In such a case, both the poles caused by the symmetric588
modes or FS(k, ω) = 0 and the antisymmetric modes or FA(k, ω) = 0 will exist in the589
coefficients Dn,n′,m,m′ given in (3.35b). Here, we may give an example of the case when the590
ice sheet is free along two side walls and is clamped into the surface of the cylinder. The591
numerical results for hydrodynamic forces are presented in figure 9. In figure 9(a), the curves592
of F∗x − κ0a show small differences only at yc/a = 0, 2 and 4. However, if the cylinder moves593
to the channel wall further, or at yc = 6 and 8, F∗x at some κ0a is significantly increased.594
Similar to the case at yc = 0, F∗x still varies relatively smoothly when yc , 0. By contrast,595
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Figure 10: Vertical shear forces on the cylinder at various off-centre positions of the
channel, edge conditions: FF-C. (b/a = 10,H/a = 5, hi/a = 1/10)

obvious local peaks and rapid changes can be observed in the curves of F∗y shown in figure596
9(b) when κ0a approaches the values corresponding to the natural frequencies of the channel.597
Similar phenomenon also occurs in the vertical shear force provided in figure 10. Compared598

with the results at yc = 0, since both ω(2i)c and ω(2i−1)
c (i = 1, 2, 3, ...) will affect V∗, and599

therefore more peaks in V∗ can be seen. In fact, if we define b±n,m = bn,m ± (−1)nb−n,m,600
c±n = cn ∓ (−1)nc−n and d±n = dn ∓ (−1)nd−n (n = 0, 1, 2, ...), the matrix equation in (3.41) ∼601
(3.43) for bn,m, cn and dn can be further converted into two independent submatrix equations.602
One for b+n,m, c+n and d+n has singular terms at natural frequencies, and it is related to F∗y and603
V∗. The other for b−n,m, c−n and d−n is regular and related to F∗x . Thus, different behaviours are604
observed from F∗x and F∗y & V∗ in figures 9 and 10 when ω is near a natural frequency.605

4.5. Wave patterns and principal strain distributions in the ice-covered channel606

The wave elevation or ice sheet deflection can be obtained from η = − i
ω

∂φ
∂z

���
z=0

, together607

with (3.44). We have608

η(r, θ) = −
π

2ω

+∞∑
n=−∞

+∞∑
m=−2

bn,mκm tanh κmH
Qm

[
H (1)

n (κmr)
Jn(κmr)

−
H (1)′

n (κma)
J ′n (κma)

]
Jn(κmr)e−inθ

+
iL
ρω3

+∞∑
n=−∞

+∞∑
m=−2

(κ2
mcn + dn)κm tanh2 κmH

Qm

Jn(κmr)
J ′n (κma)

einθ .

(4.10)609
An example of |η |/A at κ0a = 0.8 under four different combinations of edge conditions is610
provided in figure 11, where the vertical cylinder is located at the centre of the channel. It611
can be seen that the wave pattern is significantly affected by the edge conditions. In figure612
11(a), when the ice edges are free at all boundaries, the maximum amplitude may occur613
at the front surface of the vertical cylinder or at two side walls. In figure 11(b), if the ice614
sheet is clamped to the cylinder, the wave amplitude on its surface will be zero, and then the615
maximum amplitude may occur at the region in front of the cylinder or at two side walls. By616
contrast, when the ice edges are clamped to two channel walls, as given in figures 11(c) and617
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Figure 11: Wave amplitude |η |/A in the ice-covered channel at κ0a = 0.8 under different
edge conditions. (a) FF-F; (b) FF-C; (c) CC-F; (d) CC-C.

(b/a = 10,H/a = 5, hi/a = 1/10)

11(d), the maximum wave amplitude may appear only on the front surface or front region of618
the cylinder.619
The strain of the ice sheet is also a very important physical parameter related to the620

fracture and breakup of the ice. The principal strain ε can be calculated by determining the621
eigenvalues of the strain tensor matrix (Fung 1977)622

ε =
hi
2

[
εrr εrθ
εrθ εθθ

]
=

hi
2

[
∂2W
∂r2

∂2W
r∂r∂θ −

∂W
r2∂θ

∂2W
r∂r∂θ −

∂W
r2∂θ

∂W
r∂r +

∂2W
r2∂θ2

]
, (4.11)623

where the ice sheet deflection W(r, θ, t) can be expressed as624

W(r, θ, t) = Re
{
η(r, θ)eiωt

}
= Re {η(r, θ)} cosωt − Im {η(r, θ)} sinωt . (4.12)625

The eigenvalues ς1,2 of the strain tensor matrix ε can be obtained as626

ς1,2 =

hi
4


(
∂2W
∂r2 +

∂W
r∂r
+
∂2W

r2∂θ2

)
±

[(
∂2W
∂r2 −

∂W
r∂r
−
∂2W

r2∂θ2

)2

+ 4
(
∂2W

r∂r∂θ
−
∂W

r2∂θ

)2]1/2 .
(4.13)627

Substituting (4.12) and (4.10) into (4.13), then the maximum principal strain εmax at a given628
location can be found as the maximum value of |ς1,2 | as t varies from 0 to 2π/ω. The629
distributions of εmax at κ0a = 0.8 under four different combinations of edge conditions are630
given in figures 12. Compared with figure 11, the position of the largest value of εmax is631
different from that of |η |/A. In figures 12(b) and 12(d), when the ice sheet is clamped to632
the surface of the cylinder, the largest εmax is at the front surface of the vertical cylinder.633
However, when the ice sheet is free on the cylinder surface, the largest εmax is on the left and634
right sides of the cylinder, as shown in figures 12(a) and 12(c).635
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Figure 12: The distribution of the maximum principal strain εmax in the ice-covered
channel at κ0a = 0.8 under different edge conditions. (a) FF-F; (b) FF-C; (c) CC-F; (d)

CC-C. (b/a = 10,H/a = 5, hi/a = 1/10)

5. Conclusions636

The problem of hydroelastic wave diffraction by a vertical circular cylinder standing in637
an ice-covered channel has been studied analytically. The solution procedure is appliable638
to various ice edge conditions and their combinations. The Green function satisfying all639
the boundary conditions apart from that on the body surface is first derived based on the640
method of eigenfunction expansion in the vertical direction. With the help of the Green641
function, a general source distribution formula for surface-piercing structures with arbitrary642
shapes in fluid with an ice cover is established, which involves the integrals over the body643
surface and its intersection with the ice sheet. If the structure is a vertical cylinder mounted644
to the bottom of the channel and has a constant cross section along the depth direction, the645
source distribution formula can be further simplified by using an inner product. Based on646
this formula, the velocity potential due to a vertical circular cylinder is expressed explicitly647
in an infinite series with unknown coefficients, which can be solved from the impermeable648
condition on the body surface and the conditions at the ice edge contacting the body surface.649
From the solution of theGreen function, it is confirmed that the dispersion relation obtained650

is mathematically identical to that in Ren et al. (2020), but the formulation in the present651
work is much neater. The natural frequency of the ice-covered channel is defined in a similar652
way as that of free surface channels. There are an infinite number of natural frequencies, at653
any one of them, the Green function will be singular, which further leads to a singular term654
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in the boundary integral equation of the velocity potential due to a vertical circular cylinder.655
To treat this, a revised non-singular matrix equation with a parameter Γ is established. The656
velocity potential will still be bounded at the natural frequencies when Γ , 0.657
From the results of the hydroelastic wave diffraction by a vertical circular cylinder, it is658

found that both the hydrodynamic forces F∗x , F∗y and the vertical shear forceV∗ on the cylinder659
are all significantly affected by the channel width b, ice sheet thickness hi , as well as the edge660
conditions on the body surface and channel walls. The numerical results are also compared661
with those in the unbounded ocean with an ice-cover and in the free surface channel. It is662
observed that F∗x will tend to that in the bounded ice-covered ocean when b → +∞ and663
tend to the result in the free surface channel when hi → 0. The behaviour of F∗x is different664
from those of F∗y and V∗ near the natural frequency. F∗x varies relatively smoothly when κ0a665
is near the natural frequency. This is because the singularity of the Green function at the666
natural frequency does not affect the coefficient in the equation of F∗x . Obvious peaks and667
sudden changes near the natural frequencies can be observed in the curves of F∗y versus κ0a668
and V∗ versus κ0a, as the singularity of the Green function does affect the coefficients in the669
equation of F∗y and V∗. However, F∗y and V∗ are not singular at the natural frequency when670
the parameter Γ , 0. The sudden change ofV∗ always exists even when b is very large, which671
makes the curves of V∗ versus κ0a always be different from that in the unbounded ocean.672
The present work has focused a single vertical circular cylinder. The formulation can be673

easily extended to multiple vertical circular cylinders, if the Graf’s addition theorem for the674
Bessel functions is used, as in Ren et al. (2018a). For a vertical cylinder of arbitrary cross675
section, the vertical modes for the source distribution can be still used, while numerical676
discretisation can be used in the circumferential direction. For a body of a general shape, the677
boundary element method can be used based on the Green function derived in the work.678
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Appendix A. The series form of the Green function in unbounded problems688

To convert the integral in (3.5) into a summation, wemay consider the following integration689

IR =
∮
ΓR

e−iσ |y−y0 | f (α, z>, z<)
αK(α, ω)

dσ, (A 1)690

where the integration loop ΓR is first along the real axis from (−R, 0) to (R, 0) and then691
clockwise along a semicircle of radius R centred at the origin. The integration path at the692
real axis should pass under (over) the poles at σ = −(κ2

0 − k2)1/2 (σ = +(κ2
0 − k2)1/2) when693
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κ0 > k. When R→ +∞, the integrand decays exponentially, thus only the integral along the694
real axis is remained in IR, or695

lim
R→+∞

IR =
∫ +∞

−∞

e−iσ |y−y0 | f (α, z>, z<)
αK(α, ω)

dσ. (A 2)696

Applying the residue theorem to (A 1) and noticing the additional poles in the complex plane697
where K(α, ω) = 0, we have698

lim
R→+∞

∮
ΓR

e−iσ |y−y0 | f (α, z>, z<)
αK(α, ω)

dσ = −2πi
+∞∑

m=−2

e−iσm |y−y0 | f (−κm, z>, z<)
σmK ′(−κm, ω)

. (A 3)699

where the prime denotes derivative with respect to α. Using700

K ′(κm, ω) =
2ρω2 cosh2 κmH

sinh κmH
Qm, (A 4a)701

702

f (κm, z>, z<) =
ρω2 cosh κm(z + H) cosh κm(z0 + H)

sinh κmH
, (A 4b)703

we have704 ∫ +∞

−∞

e−iσ |y−y0 | f (α, z>, z<)
αK(α, ω)

dσ = −2πi
+∞∑

m=−2

e−iσm |y−y0 |ψm(z)ψm(z0)

2σmQm
, (A 5)705

where ψm(z) and Qm are defined in (3.9) and (3.10), respectively. This shows that (3.5) is706
identical to (3.8).707

Appendix B. Elements of the matrix equation in (3.20)708

The elements of matrix Ai j and column Bj (i, j = 1 ∼ 4) in (3.20) under different edges709
are given below. For clamped-clamped edges, we have710

A1j =
L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qmσm
×

[
−
(κ2

mδj1 + δj2)

tanσmb
+
(κ2

mδj3 + δj4)

cotσmb

]
, (B 1a)711

712

A2j =
L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qmσm
×

[
−
(κ2

mδj1 + δj2)

tanσmb
−
(κ2

mδj3 + δj4)

cotσmb

]
, (B 1b)713

714

A3j =
L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
×

[
κ2
m(δj1 + δj3) + (δj2 + δj4)

]
, (B 1c)715

716

A4j =
L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
×

[
κ2
m(δj3 − δj1) + (δj4 − δj2)

]
, (B 1d)717

718

Bj = −

+∞∑
m=−2

ψm(z0)κm tanh κmH
Qmσm sin 2σmb

×
[
δj1 cosσm(y0 + b) + δj2 cosσm(y0 − b)

]
. (B 2)719

For free-free edges, we obtain720

A1j =
L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
×

(
σm +

νk2

σm

) [
(κ2

mδj1 + δj2)

tanσmb
−
(κ2

mδj3 + δj4)

cotσmb

]
, (B 3a)721
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722

A2j =
L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
×

(
σm +

νk2

σm

) [
(κ2

mδj1 + δj2)

tanσmb
+
(κ2

mδj3 + δj4)

cotσmb

]
, (B 3b)723

724

A3j = −
L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
×

[
σ2
m + (2 − ν)k

2] [
κ2
m(δj1 + δj3) + (δj2 + δj4)

]
, (B 3c)725

726

A4j = −
L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
×

[
σ2
m + (2 − ν)k

2] [
κ2
m(δj3 − δj1) + (δj4 − δj2)

]
, (B 3d)727

728

Bj =

+∞∑
m=−2

ψm(z0)κm tanh κmH
Qm sin 2σmb

×

(
σm +

νk2

σm

) [
δj1 cosσm(y0 + b) + δj2 cosσm(y0 − b)

]
.

(B 4)729
Using (Evans & Porter 2003)730

L
ρω2

+∞∑
m=−2

κnm tanh2 κmH
Qm

=


0 n = 2
1 n = 4
0 n = 6

, (B 5)731

A3j and A4j ( j = 1 ∼ 4) can be further simplified. For clamped-clamped edges, this gives732

A3j = δj1 + δj3 and A4j = −δj1 + δj3, (B 6)733

while for free-free edges, we have734

A3j = (ν−1)k2(δj1+δj3)−(δj2+δj4) and A4j = (ν−1)k2(δj3−δj1)−(δj4−δj2). (B 7)735

From (B 1) ∼ (B 4) and (B 6), (B 7), βj can be solved as736 
βj =

−δj2

2A12

+∞∑
m=−2

ψm(z0)κm tanh κmH
Qmσm

cosσmy0

sinσmb
, j = 1, 2

βj =
δj4

2A14

+∞∑
m=−2

ψm(z0)κm tanh κmH
Qmσm

sinσmy0

cosσmb
, j = 3, 4

(B 8)737

for clamped-clamped edges, while738 
βj =

δj1 + δj2(ν − 1)k2

2[A11 + (ν − 1)k2 A12]

+∞∑
m=−2

ψm(z0)(σ
2
m + νk2)κm tanh κmH

Qmσm

cosσmy0

sinσmb
, j = 1, 2

βj =
−δj3 − δj4(ν − 1)k2

2[A13 + (ν − 1)k2 A14]

+∞∑
m=−2

ψm(z0)(σ
2
m + νk2)κm tanh κmH

Qmσm

sinσmy0

cosσmb
, j = 3, 4

(B 9)739
for free-free edges.740

Appendix C. The source distribution formula for the velocity potential741

Applying the Green’s second identity to the diffracted velocity potential component φD742
and the Green function G throughout the fluid domain, we have743

2πφD(x0, y0, z0) =

∯
S

(
φD

∂G
∂n
− G

∂φD
∂n

)
dS, (C 1)744
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where S is comprised of the bottom of the channel SH , two vertical side walls SW , ice sheet745
SI , two vertical far filed boundaries S±∞ and the surface of the body SB. By using a similar746
procedure given in Yang et al. (2021), only the integrals over SB and along the intersection747
line L of the ice sheet with the body surface need to be kept on the right-hand side, or748

2πφD(x0, y0, z0) =
L
ρω2×∮

L

[
∂G
∂z

∂

∂n

(
∇2 ∂φD

∂z

)
−
∂2G
∂z∂n

(
∇2 ∂φD

∂z

)
−
∂φD
∂z

∂

∂n

(
∇2 ∂G

∂z

)
+
∂2φD
∂z∂n

(
∇2 ∂G

∂z

)]
dl

+

∬
SB

(
φD

∂G
∂n
− G

∂φD
∂n

)
dS.

(C 2)749
Using the relationship ∇2 = −∂2/∂z2 obtained from the Laplace equation, (C 2) can be750
further written as751

2πφD(x0, y0, z0) = −
L
ρω2

∮
L

[
∂G
∂z

∂4φD

∂n∂z3 −
∂2G
∂n∂z

∂3φD

∂z3 −
∂φD
∂z

∂4G
∂n∂z3 +

∂2φD
∂n∂z

∂3G
∂z3

]
dl

+

∬
SB

(
φD

∂G
∂n
− G

∂φD
∂n

)
dS.

(C 3)752
We may introduce a velocity potential ϕ(x, y, z) defined inside of the vertical cylinder. On753
z = 0, ϕ satisfies the ice sheet boundary condition in (2.4). On the body surface SB754

ϕ = φD, on SB . (C 4)755

At the intersection line L, the edge conditions can be expressed as756

∂ϕ

∂z
=
∂φD
∂z

and
∂3ϕ

∂z3 =
∂3φD

∂z3 , at L. (C 5)757

Apply Green’s second identity to ϕ and G in the inner domain, if the source point (x0, y0, z0)758
is in the outer domain, we obtain759

0 = −
L
ρω2

∮
L

[
∂G
∂z

∂4ϕ

∂n∂z3 −
∂2G
∂n∂z

∂3ϕ

∂z3 −
∂ϕ

∂z
∂4G
∂n∂z3 +

∂2ϕ

∂n∂z
∂3G
∂z3

]
dl

+

∬
SB

(
ϕ
∂G
∂n
− G

∂ϕ

∂n

)
dS.

(C 6)760

Subtracting (C 6) from (C 3) and using conditions in (C 4) and (C 5), we obtain761

φD(x0, y0, z0) =
L
ρω2

∮
L

(
∂G
∂z

∂3Ψ

∂z3 +
∂3G
∂z3

∂Ψ

∂z

)
dl +

∬
SB

GΨdS. (C 7)762

where source strength Ψ(x, y, z) on the body surface is defined as763

Ψ(x, y, z) =
1

2π

[
∂ϕ(x, y, z)

∂n
−
∂φD(x, y, z)

∂n

]
. (C 8)764

If the body is a vertical cylinder mounted to the bottom and with a homogeneous section765
along the z−direction. We may apply the orthogonal inner product in (3.13) to (C 7) and we766
further obtain767

φD(x0, y0, z0) =

∮
L

〈G(x, y, z; x0, y0, z0),Ψ(x, y, z)〉 dl . (C 9)768
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