88 research outputs found

    Immunodominant Antigens of Leishmania chagasi Associated with Protection against Human Visceral Leishmaniasis

    Get PDF
    One of the most striking features of infection by Leishmania chagasi is that infection leads to a spectrum of clinical outcomes ranging from asymptomatic infection to active disease. The existence of asymptomatic infected people has served as an incentive to believe that an effective vaccine is possible, but unfortunately no successful immunological characterization of such cases was obtained. Patients recovered from visceral leishmaniasis show a similar immunological profile to asymptomatic infected individuals and both exhibit a strong cell-mediated immune response against Leishmania antigens and are resistant to disease. Since the past decade several approaches were undertaken to try to shed light on the immunological profile associated with such “resistance” to infections, notwithstanding antigenic recognition profile associated to resistance to infection was not successfully explored. In the present manuscript we describe a specific IgG recognizing pattern associated with resistant individuals (asymptomatic infected people and recovery patients to visceral leishmaniasis). These data highlight the possibility of using specific proteins in serological tests for the identification of asymptomatic infected individuals

    Potentiating Effects of MPL on DSPC Bearing Cationic Liposomes Promote Recombinant GP63 Vaccine Efficacy: High Immunogenicity and Protection

    Get PDF
    Visceral leishmaniasis (VL), a vector-transmitted disease caused by Leishmania donovani, is potentially fatal if left untreated. Vaccination against VL has received limited attention compared with cutaneous leishmaniasis, although the need for an effective vaccine is pressing for the control of the disease. Earlier, we observed protective efficacy using leishmanial antigen (Ag) in the presence of either cationic liposomes or monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) against experimental VL through the intraperitoneal (i.p.) route of administration in the mouse model. However, this route of immunization is not adequate for human use. For this work, we developed vaccine formulations combining cationic liposomes with MPL-TDM using recombinant GP63 (rGP63) as protein Ag through the clinically relevant subcutaneous (s.c.) route. Two s.c. injections with rGP63 in association with cationic liposomes and MPL-TDM showed enhanced immune responses that further resulted in high protective levels against VL in the mouse model. This validates the combined use of MPL-TDM as an immunopotentiator and liposomes as a suitable vaccine delivery system

    rBCG Induces Strong Antigen-Specific T Cell Responses in Rhesus Macaques in a Prime-Boost Setting with an Adenovirus 35 Tuberculosis Vaccine Vector

    Get PDF
    BACKGROUND: BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB). We tested BCG (SSI1331) (in 6 animals, delivered intradermally) and a recombinant (rBCG) AFRO-1 expressing perfringolysin (in 6 animals) followed by two boosts (delivered intramuscullary) with non-replicating adenovirus 35 (rAd35) expressing a fusion protein composed of Ag85A, Ag85B and TB10.4, for the capacity to induce antigen-specific cellular immune responses in rhesus macaques (Macaca mulatta). Control animals received diluent (3 animals). METHODS AND FINDINGS: Cellular immune responses were analyzed longitudinally (12 blood draws for each animal) using intracellular cytokine staining (TNF-alpha, IL-2 and IFN-gamma), T cell proliferation was measured in CD4(+), CD8alpha/beta(+), and CD8alpha/alpha(+) T cell subsets and IFN-gamma production was tested in 7 day PBMC cultures (whole blood cell assay, WBA) using Ag85A, Ag85B, TB10.4 recombinant proteins, PPD or BCG as stimuli. Animals primed with AFRO-1 showed i) increased Ag85B-specific IFN-gamma production in the WBA assay (median >400 pg/ml for 6 animals) one week after the first boost with adenoviral-delivered TB-antigens as compared to animals primed with BCG (<200 pg/ml), ii) stronger T cell proliferation in the CD8alpha/alpha(+) T cell subset (proliferative index 17%) as compared to BCG-primed animals (proliferative index 5% in CD8alpha/alpha(+) T cells). Polyfunctional T cells, defined by IFN-gamma, TNF-alpha and IL-2 production were detected in 2/6 animals primed with AFRO-1 directed against Ag85A/b and TB10.4; 4/6 animals primed with BCG showed a Ag85A/b responses, yet only a single animal exhibited Ag85A/b and TB10.4 reactivity. CONCLUSION: AFRO-1 induces qualitatively and quantitatively different cellular immune responses as compared with BCG in rhesus macaques. Increased IFN-gamma-responses and antigen-specific T cell proliferation in the CD8alpha/alpha+ T cell subset represents a valuable marker for vaccine-take in BCG-based TB vaccine trials

    A Booster Vaccine Expressing a Latency-Associated Antigen Augments BCG Induced Immunity and Confers Enhanced Protection against Tuberculosis

    Get PDF
    BACKGROUND: In spite of a consistent protection against tuberculosis (TB) in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG) fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D) confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10) and 1.96 log(10) fewer bacilli in lungs and spleen, respectively; p<0.01). In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+)) simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and interleukin (IL)2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+) Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection

    Exosomes Derived from M. Bovis BCG Infected Macrophages Activate Antigen-Specific CD4+ and CD8+ T Cells In Vitro and In Vivo

    Get PDF
    Activation of both CD4+ and CD8+ T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in naïve macrophages. In the present study we demonstrate that exosomes stimulate both CD4+ and CD8+ splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4+ and CD8+ T cells. The isolated T cells also produced IFN-γ upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate

    KSAC, a Defined Leishmania Antigen, plus Adjuvant Protects against the Virulence of L. major Transmitted by Its Natural Vector Phlebotomus duboscqi

    Get PDF
    Leishmaniasis is a neglected disease caused by the Leishmania parasite and transmitted by the bite of an infective sand fly. Despite the importance of this disease there is no vaccine available for humans. Studies have shown that vector-transmitted infections are more virulent, promoting parasite establishment and abrogating protection observed against needle-injected parasites in vaccinated mice. KSAC and L110f, derived from Leishmania-based polyproteins, protected mice against the needle-injected parasites. Here, we tested the two molecules for their capacity to protect mice against cutaneous leishmaniasis transmitted by an infective sand fly. Our results show that KSAC, but not L110f, confers protection against Leishmania transmitted by sand fly bites where protection was correlated to a strong immune response to Leishmania antigens by memory T cells before and after sand fly transmission of the parasite. This is the first report of a Leishmania-based vaccine that confers protection against a virulent sand fly challenge. Our results support the importance of screening Leishmania vaccine candidates using infective sand flies before moving forward with the costly steps of vaccine development

    The HyVac4 Subunit Vaccine Efficiently Boosts BCG-Primed Anti-Mycobacterial Protective Immunity

    Get PDF
    BACKGROUND: The current vaccine against tuberculosis (TB), BCG, has failed to control TB worldwide and the protective efficacy is moreover limited to 10-15 years. A vaccine that could efficiently boost a BCG-induced immune response and thus prolong protective immunity would therefore have a significant impact on the global TB-burden. METHODS/FINDINGS: In the present study we show that the fusion protein HyVac4 (H4), consisting of the mycobacterial antigens Ag85B and TB10.4, given in the adjuvant IC31® or DDA/MPL effectively boosted and prolonged immunity induced by BCG, leading to improved protection against infection with virulent M. tuberculosis (M.tb). Increased protection correlated with an increased percentage of TB10.4 specific IFNγ/TNFα/IL-2 or TNFα/IL-2 producing CD4 T cells at the site of infection. Moreover, this vaccine strategy did not compromise the use of ESAT-6 as an accurate correlate of disease development/vaccine efficacy. Indeed both CD4 and CD8 ESAT-6 specific T cells showed significant correlation with bacterial levels. CONCLUSIONS/SIGNIFICANCE: H4-IC31® can efficiently boost BCG-primed immunity leading to an increased protective anti-M.tb immune response dominated by IFNγ/TNFα/IL-2 or TNFα/IL2 producing CD4 T cells. H4 in the CD4 T cell inducing adjuvant IC31® is presently in clinical trials

    The Secreted Lipoprotein, MPT83, of Mycobacterium tuberculosis Is Recognized during Human Tuberculosis and Stimulates Protective Immunity in Mice

    Get PDF
    The long-term control of tuberculosis (TB) will require the development of more effective anti-TB vaccines, as the only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG), has limited protective efficacy against infectious pulmonary TB. Subunit vaccines have an improved safety profile over live, attenuated vaccines, such as BCG, and may be used in immuno-compromised individuals. MPT83 (Rv2873) is a secreted mycobacterial lipoprotein expressed on the surface of Mycobacterium tuberculosis. In this study, we examined whether recombinant MPT83 is recognized during human and murine M. tuberculosis infection. We assessed the immunogenicity and protective efficacy of MPT83 as a protein vaccine, with monophosphyl lipid A (MPLA) in dimethyl-dioctadecyl ammonium bromide (DDA) as adjuvant, or as a DNA vaccine in C57BL/6 mice and mapped the T cell epitopes with peptide scanning. We demonstrated that rMPT83 was recognised by strong proliferative and Interferon (IFN)-γ-secreting T cell responses in peripheral blood mononuclear cells (PBMC) from patients with active TB, but not from healthy, tuberculin skin test-negative control subjects. MPT83 also stimulated strong IFN-γ T cell responses during experimental murine M. tuberculosis infection. Immunization with either rMPT83 in MPLA/DDA or DNA-MPT83 stimulated antigen-specific T cell responses, and we identified MPT83127–135 (PTNAAFDKL) as the dominant H-2b-restricted CD8+ T cell epitope within MPT83. Further, immunization of C57BL/6 mice with rMPT83/MPLA/DDA or DNA-MPT83 stimulated significant levels of protection in the lungs and spleens against aerosol challenge with M. tuberculosis. Interestingly, immunization with rMPT83 in MPLA/DDA primed for stronger IFN-γ T cell responses to the whole protein following challenge, while DNA-MPT83 primed for stronger CD8+ T cell responses to MPT83127–135. Therefore MPT83 is a protective T cell antigen commonly recognized during human M. tuberculosis infection and should be considered for inclusion in future TB subunit vaccines

    Improved Protective Efficacy of a Species-Specific DNA Vaccine Encoding Mycolyl-Transferase Ag85A from Mycobacterium ulcerans by Homologous Protein Boosting

    Get PDF
    Vaccination with plasmid DNA encoding Ag85A from M. bovis BCG can partially protect C57BL/6 mice against a subsequent footpad challenge with M. ulcerans. Unfortunately, this cross-reactive protection is insufficient to completely control the infection. Although genes encoding Ag85A from M. bovis BCG (identical to genes from M. tuberculosis) and from M. ulcerans are highly conserved, minor sequence differences exist, and use of the specific gene of M. ulcerans could possibly result in a more potent vaccine. Here we report on a comparison of immunogenicity and protective efficacy in C57BL/6 mice of Ag85A from M. tuberculosis and M. ulcerans, administered as a plasmid DNA vaccine, as a recombinant protein vaccine in adjuvant or as a combined DNA prime-protein boost vaccine. All three vaccination formulations induced cross-reactive humoral and cell-mediated immune responses, although species-specific Th1 type T cell epitopes could be identified in both the NH2-terminal region and the COOH-terminal region of the antigens. This partial species-specificity was reflected in a higher—albeit not sustained—protective efficacy of the M. ulcerans than of the M. tuberculosis vaccine, particularly when administered using the DNA prime-protein boost protocol
    corecore