1,507 research outputs found

    Pseudogap and Mott Transition Studied by Cellular Dynamical Mean Field Theory

    Full text link
    We study metal-insulator transitions between Mott insulators and metals. The transition mechanism completely different from the original dynamical mean field theory (DMFT) emerges from a cluster extension of it. A consistent picture suggests that the quasiparticle weight ZZ remains nonzero through metals and suddenly jumps to zero at the transition, while the gap opens continuously in the insulators. This is in contrast with the original DMFT, where ZZ continuously vanishes but the gap opens discontinuously. The present results arising from electron differentiation in momentum space agree with recent puzzling bulk-sensitive experiments on CaVO3_3 and SrVO3_3.Comment: 5 pages, 4 figure

    Suppressed Coherence due to Orbital Correlations in the Ferromagnetically Ordered Metallic Phase of Mn Compounds

    Full text link
    Small Drude weight DD together with small specific heat coefficient γ\gamma observed in the ferromagnetic phase of R1x_{1-x}Ax_xMnO3_3 (R=La, Pr, Nd, Sm; A=Ca, Sr, Ba) are analyzed in terms of a proximity effect of the Mott insulator. The scaling theory for the metal-insulator transition with the critical enhancement of orbital correlations toward the staggered ordering of two ege_g orbitals such as 3x2r23x^2-r^2 and 3y2r23y^2-r^2 symmetries may lead to the critical exponents of DδuD \propto \delta^{u} and γδv\gamma \propto \delta^v with u=3/2u=3/2 and v=0v=0. The result agrees with the experimental indications.Comment: 4 pages LaTeX using jpsj.sty. To appear in J. Phys. Soc. Jpn. 67(1998)No.

    Quantum-number projection in the path-integral renormalization group method

    Full text link
    We present a quantum-number projection technique which enables us to exactly treat spin, momentum and other symmetries embedded in the Hubbard model. By combining this projection technique, we extend the path-integral renormalization group method to improve the efficiency of numerical computations. By taking numerical calculations for the standard Hubbard model and the Hubbard model with next nearest neighbor transfer, we show that the present extended method can extremely enhance numerical accuracy and that it can handle excited states, in addition to the ground state.Comment: 11 pages, 7 figures, submitted to Phys. Rev.

    Multi-wavelength spectroscopic observation of EUV jet in AR 10960

    Full text link
    We have studied the relationship between the velocity and temperature of a solar EUV jet. The highly accelerated jet occurred in the active region NOAA 10960 on 2007 June 5. Multi-wavelength spectral observations with EIS/Hinode allow us to investigate Doppler velocities at the wide temperature range. We analyzed the three-dimensional angle of the jet from the stereoscopic analysis with STEREO. Using this angle and Doppler velocity, we derived the true velocity of the jet. As a result, we found that the cool jet observed with \ion{He}{2} 256 \AA log10Te[K]=4.9\log_{10}T_e[\rm{K}] = 4.9 is accelerated to around 220km/s220 \rm{km/s} which is over the upper limit of the chromospheric evaporation. The velocities observed with the other lines are under the upper limit of the chromospheric evaporation while most of the velocities of hot lines are higher than that of cool lines. We interpret that the chromospheric evaporation and magnetic acceleration occur simultaneously. A morphological interpretation of this event based on the reconnection model is given by utilizing the multi-instrumental observations.Comment: Accepted for publication in Ap

    Quantification of propagation modes in an astronomical instrument from its radiation pattern

    Full text link
    Context. Understanding complex phenomena and unsolved problems in modern astronomy requires wider-bandwidth observations. The current technique for designing and fabricating an astronomical instrument potentially provides such observations with higher efficiency and precision than in the past. Higher-order modes in an instrument associated with wider bandwidths have been reported, which may degrade observation precision. Aims. To reduce the unfavorable degradation, we need to quantify the higher-order propagation modes, though their power is too difficult to measure directly. Instead of the direct mode measurement, we aim at developing a method based on measurable radiation patterns from an instrument of interest. Method. Assuming a linear system, whose radiated field is determined as a superposition of the mode coefficients in an instrument, we obtain a coefficient matrix connecting the inside modes and the outside radiated field and calculate the pseudo-inverse matrix. To understand the estimation accuracy of the proposed method, we demonstrate two cases with numerical simulations, axially-corrugated horn case and offset Cassegrain antenna case, and investigate the effect of random errors on the accuracy. Results. Both cases showed the estimated mode coefficients with a precision of 10e-6 with respect to the maximum mode amplitude and 10e-3 degrees in phase, respectively. The calculation errors were observed when the random errors were smaller than 0.01 percent of the maximum radiated field amplitude. The demonstrated method works independently of the details of a system. Conclusions. The method can quantify the propagation modes inside an instrument and will be applicable to most of linear components and antennas. This method can be employed for a general purpose, such as diagnosis of feed alignment and higher-performance feed design.Comment: 7 pages, 11 figure

    Competition between spin exchange and correlated hopping

    Full text link
    The ground-state phase diagram is numerically studied for an electronic model consisting of the spin exchange term (J) and the correlated hopping term (t_3: the three-site term). This model has no single-particle hopping and the ratio of the two terms is controlled by a parameter \alpha \equiv 4 t_3 / J. The case of \alpha=1 corresponds to complete suppression of single-particle hopping in the strong-coupling limit of the Hubbard model. In one dimension, phase separation takes place below a critical value \alpha_c = 0.36-0.63 which depends on the electron density. Spin gap opens in the whole region except the phase-separated one. For \alpha \gsim 1.2 and low hole densities, charge-density-wave correlations are the most dominant, whereas singlet-pairing correlations are the most dominant in the remaining region. The possibility of superconductivity in the two-dimensional case is also discussed, based on equal-time pairing correlations.Comment: 4 pages including 5 figures. Proceedings of ISSP-Kashiwa 2001 (submitted to J. Phys. Chem. Solids

    Doping-driven Mott transition in La_{1-x}Sr_xTiO_3 via simultaneous electron and hole doping of t2g subbands

    Get PDF
    The insulator to metal transition in LaTiO_3 induced by La substitution via Sr is studied within multi-band exact diagonalization dynamical mean field theory at finite temperatures. It is shown that weak hole doping triggers a large interorbital charge transfer, with simultaneous electron and hole doping of t2g subbands. The transition is first-order and exhibits phase separation between insulator and metal. In the metallic phase, subband compressibilities become very large and have opposite signs. Electron doping gives rise to an interorbital charge flow in the same direction as hole doping. These results can be understood in terms of a strong orbital depolarization.Comment: 4 pages, 5 figure

    Cluster dynamical mean-field study of the Hubbard model on a 3D frustrated hyperkagome lattice

    Full text link
    We study the Hubbard model on a geometrically-frustrated hyperkagome lattice by a cluster extension of the dynamical mean field theory. We calculate the temperature (TT) dependences of the specific heat (CC) and the spin-lattice relaxation time (T1T_1) in correlated metallic region. C/TC/T shows a peak at T=Tp1T=T_{p1} and rapidly decreases as T>0T->0. On the other hand, 1/T1T1/T_1T has a peak at a higher temperature Tp2T_{p2} than Tp1T_{p1}, and largely decreases below Tp2T_{p2}, followed by the Korringa law 1/T1proptoT1/T_1 propto T as T>0T->0. Both peak temperatures are suppressed and the peaks become sharper as electron correlation is increased. These behaviors originate from strong renormalization of the energy scales in the peculiar electronic structure in this frustrated system; a pseudo-gap like feature, the van-Hove singularity, and the flat band. The results are discussed in comparison with the experimental data in the hyperkagome material, Na4_4Ir3_3O8_8.Comment: 4 pages, 4 figures, Conference proceedings for Highly Frustrated Magnetism 200
    corecore