121 research outputs found

    Expression of hepcidin mRNA is uniformly suppressed in hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study evaluated the expression of hepcidin mRNA in hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>Samples of cancerous and non-cancerous liver tissue were taken from 40 patients with HCC who underwent hepatectomy. Expression of hepcidin mRNA was evaluated by real-time PCR, and compared in tumors differing in their degree of differentiation, number of tumors, and vessel invasion. Correlations between hepcidin expression and the interval until HCC recurrence, and the serum concentration of hepcidin were evaluated, together with the expression of mRNAs for other iron metabolism molecules, ferroportin and transferrin receptor 2 (Trf2).</p> <p>Results</p> <p>Hepcidin mRNA expression in non-cancerous and cancerous tissues was 1891.8 (32.3–23187.4) and 53.4 (1.9–3185.8), respectively (<it>P </it>< 0.0001). There were no significant differences in hepcidin expression among tumors differing in their degree of differentiation, number of tumors, or vessel invasion. There was no significant correlation between hepcidin expression and the interval until HCC recurrence. The serum concentration of hepcidin-25 was not correlated with hepcidin-mRNA expression. Finally, there were no significant differences in the expression of mRNA for ferroportin and Trf2 between cancerous and non-cancerous tissues.</p> <p>Conclusion</p> <p>Expression of hepcidin mRNA is strikingly suppressed in cancerous, but not in non-cancerous tissues, in patients with HCC, irrespective of ferroportin or Trf2 expression. Uniform suppression of hepcidin may be linked to the development of HCC.</p

    Improved Siderotic Nodule Detection in Cirrhosis with Susceptibility-Weighted Magnetic Resonance Imaging: A Prospective Study

    Get PDF
    BACKGROUND: Hepatic cirrhosis is a common pathway of progressive liver destruction from multiple causes. Iron uptake can occur within the hepatic parenchyma or within the various nodules that form in a cirrhotic liver, termed siderotic nodules. Siderotic nodule formation has been shown to correlate with inflammatory activity, and while the relationship between siderotic nodule formation and malignancy remains unclear, iron distribution within hepatic nodules has known implications for the detection of hepatocellular carcinoma. We aimed to evaluate the role of abdominal susceptibility-weighted imaging in the detection of siderotic nodules in cirrhotic patients. METHODOLOGY/PRINCIPAL FINDINGS: Forty-six (46) cirrhotic patients with at least one siderotic nodule detected on previous imaging underwent both computed tomography and magnetic resonance imaging (T1-, T2-, T2*-, and susceptibility-weighted imaging) at 3.0 Tesla. Imaging data was independently analyzed by two radiologists. Siderotic nodule count was determined for each modality and imaging sequence. For each magnetic resonance imaging technique, siderotic nodule conspicuity was assessed on a 3 point scale (1 = weak, 2 = moderate, 3 = strong). More nodules were detected by susceptibility weighted imaging (n = 2935) than any other technique, and significantly more than by T2* weighted imaging (n = 1696, p<0.0001). Lesion conspicuity was also highest with susceptibility-weighted imaging, with all nodules found to be moderate (n = 6) or strong (n = 40); a statistically significant difference (p<0.001). CONCLUSIONS: Susceptibility-weighted imaging had the greatest lesion conspicuity and detected the highest number of siderotic nodules suggesting it is the most sensitive imaging technique to detect siderotic nodules in cirrhotic patients

    Steatosis degree, measured by morphometry, is linked to other liver lesions and metabolic syndrome components in patients with NAFLD:

    Get PDF
    Background and aim: We carried out morphometric measurements of steatosis to evaluate relationships between steatosis degree and other liver lesions or metabolic syndrome components in nonalcoholic fatty liver disease (NAFLD).Patients and methods: We developed an algorithm to measure steatosis area. Two hundred and fourteen patients with NAFLD were included in derivation (10) and validation (204) groups. Controls consisted of patients who were steatosis-free (12), patients with chronic hepatitis C (188), and patients with alcoholic chronic liver disease (94). Results: Accuracy of steatosis area was considered as good or very good in at least 72% of cases by three pathologists. Steatosis areas were as follows: NAFLD=10.3±9.7%, virus=2.4±3.1%, alcohol=7.8±8.2% (P&lt;0.0001). Steatosis area was closely related to steatosis grades in NAFLD (P&lt;0.0001 for linear trend). Steatosis area increased from the fibrosis stage F0 to the fibrosis state F2, then decreased in the stages F3 and F4 (cirrhosis) (P&lt;0.0001 for quadratic trend). Fibrosis was present in an average steatosis area of approximately 4% (defining significant steatosis) and in nonalcoholic steatohepatitis by approximately 8% (defining severe steatosis). Steatosis and fibrosis area increased symmetrically until approximately 10%, then steatosis area decreased to null as average fibrosis area reached 32%. Average fasting glycemia (approximately 92 mg/dl) or triglycerides and BMI plateaued before a steatosis area of approximately 4%, then increased thereafter. Significant steatosis was present in 61.3% of NAFLD versus 20.2% of viral hepatitis (P&lt;0.0001) and in 58.7% of alcoholic liver diseases (P=0.674). Conclusions: The average threshold of steatosis area is 4% for the development of fibrosis or metabolic syndrome components and 8% for nonalcoholic steatohepatitis. Steatosis area may contribute to defining the normal range and clinical course of metabolic components

    Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan.

    Get PDF
    BACKGROUND: There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC. METHODS: Here, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach. RESULTS: Strong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor. CONCLUSIONS: New calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin

    Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C

    Get PDF
    Although the oxidative stress frequently occurs in patients with chronic hepatitis C, its role in future hepatocellular carcinoma (HCC) development is unknown. Hepatic 8-hydroxydeoxyguanosine (8-OHdG) was quantified using liver biopsy samples from 118 naïve patients who underwent liver biopsy from 1995 to 2001. The predictability of 8-OHdG for future HCC development and its relations to epidemiologic, biochemical and histological baseline characteristics were evaluated. During the follow-up period (mean was 6.7±3.3 years), HCC was identified in 36 patients (30.5%). Univariate analysis revealed that 16 variables, including 8-OHdG counts (65.2±20.2 vs 40.0±23.5 cells per 105 μm2, P<0.0001), were significantly different between patients with and without HCC. Cox proportional hazard analysis showed that the hepatic 8-OHdG (P=0.0058) and fibrosis (P=0.0181) were independent predicting factors of HCC. Remarkably, 8-OHdG levels were positively correlated with body and hepatic iron storage markers (vs ferritin, P<0.0001 vs hepatic iron score, P<0.0001). This study showed that oxidative DNA damage is associated with increased risk for HCC and hepatic 8-OHdG levels are useful as markers to identify the extreme high-risk subgroup. The strong correlation between hepatic DNA damage and iron overload suggests that the iron content may be a strong mediator of oxidative stress and iron reduction may reduce HCC incidence in patients with chronic hepatitis C

    A new 500 kb haplotype associated with high CD8+ T-lymphocyte numbers predicts a less severe expression of hereditary hemochromatosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary Hemochromatosis(HH) is a common genetic disorder of iron overload where the large majority of patients are homozygous for one ancestral mutation in the <it>HFE </it>gene. In spite of this remarkable genetic homogeneity, the condition is clinically heterogeneous, varying from a severe disease to an asymptomatic phenotype with only abnormal biochemical parameters. The recent recognition of the variable penetrance of the HH mutation in different large population studies demands the need to search for new modifiers of its phenotypic expression. The present study follows previous observations that MHC class-I linked genetic markers, associated with the setting of CD8+ T-lymphocyte numbers, could be clinically relevant modifiers of the phenotypic expression in HH, and aimed to find new markers that could be used as more reliable prognostic variables.</p> <p>Methods</p> <p>Haplotype analysis, including seven genetic markers within a 1 Mb region around the microsatellite D6S105 was performed in a group of 56 previously characterized C282Y homozygous Portuguese patients. Parameters analyzed in this study were total body iron stores, clinical manifestations related with HH and immunological parameters (total lymphocyte numbers, CD4+ and CD8+ T-lymphocyte numbers). An independent group of 10 C282Y homozygous patients from Vancouver, Canada, were also included in this study and analyzed for the same parameters.</p> <p>Results</p> <p>A highly conserved ancestral haplotype defined by the SNP markers PGBD1-A, ZNF193-A, ZNF165-T (designated as A-A-T) was found associated with both abnormally low CD8+ T-lymphocyte numbers and the development of a severe clinical expression of HH. In a small proportion of patients, another conserved haplotype defined by the SNP markers PGBD1-G, ZNF193-G, ZNF165-G (designated as G-G-G) was found associated with high CD8+ T-lymphocyte numbers and a milder clinical expression. Remarkably, the two conserved haplotypes defined in Portuguese patients were also observed in the geographically different population of Canadian patients, also predicting CD8+ T-lymphocyte numbers and the severity of disease.</p> <p>Conclusion</p> <p>These results may have important implications not only for approaching the question of the penetrance of the hemochromatosis gene in different world populations but also to further narrow the region of interest to find a candidate gene involved in the setting of CD8+ T-lymphocyte numbers in humans.</p

    Hepcidin Expression in Iron Overload Diseases Is Variably Modulated by Circulating Factors

    Get PDF
    Hepcidin is a regulatory hormone that plays a major role in controlling body iron homeostasis. Circulating factors (holotransferrin, cytokines, erythroid regulators) might variably contribute to hepcidin modulation in different pathological conditions. There are few studies analysing the relationship between hepcidin transcript and related protein expression profiles in humans. Our aims were: a. to measure hepcidin expression at either hepatic, serum and urinary level in three paradigmatic iron overload conditions (hemochromatosis, thalassemia and dysmetabolic iron overload syndrome) and in controls; b. to measure mRNA hepcidin expression in two different hepatic cell lines (HepG2 and Huh-7) exposed to patients and controls sera to assess whether circulating factors could influence hepcidin transcription in different pathological conditions. Our findings suggest that hepcidin assays reflect hepatic hepcidin production, but also indicate that correlation is not ideal, likely due to methodological limits and to several post-trascriptional events. In vitro study showed that THAL sera down-regulated, HFE-HH and C-NAFLD sera up-regulated hepcidin synthesis. HAMP mRNA expression in Huh-7 cells exposed to sera form C-Donors, HFE-HH and THAL reproduced, at lower level, the results observed in HepG2, suggesting the important but not critical role of HFE in hepcidin regulation

    Mammary stem cells have myoepithelial cell properties.

    Get PDF
    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.This work was funded by Cancer Research UK, Breast Cancer Campaign, the University of Cambridge, Hutchison Whampoa Limited, La Ligue Nationale Contre le Cancer (Equipe Labelisée 2013) and a grant from Agence Nationale de la Recherche ANR- 08-BLAN-0078-01 to M.A.G.This is the author accepted manuscript. The final version is available from Nature at http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb3025.html

    Stainable hepatic iron in 341 African American adults at coroner/medical examiner autopsy

    Get PDF
    BACKGROUND: Results of previous autopsy studies indicate that increased hepatic iron stores or hepatic iron overload is common in African Americans dying in hospitals, but there are no reports of hepatic iron content in other cohorts of African Americans. METHODS: We investigated the prevalence of heavy liver iron deposition in African American adults. Using established histochemical criteria, we graded Perls' acid ferrocyanide-reactive iron in the hepatocytes and Kupffer cells of 341 consecutive African American adults who were autopsied in the coroner/medical examiner office. Heavy staining was defined as grade 3 or 4 hepatocyte iron or grade 3 Kupffer cell iron. RESULTS: There were 254 men and 85 women (mean age ± 1 SD: 44 ± 13 y vs. 48 ± 14 y, respectively; p = 0.0255); gender was unstated or unknown in two subjects. Approximately one-third of subjects died of natural causes. Heavy staining was observed in 10.2% of men and 4.7% of women. 23 subjects had heavy hepatocyte staining only, six had heavy Kupffer cell staining only, and one had a mixed pattern of heavy staining. 15 subjects had histories of chronic alcoholism; three had heavy staining confined to hepatocytes. We analyzed the relationships of three continuous variables (age at death in years, hepatocyte iron grade, Kupffer cell iron grade) and two categorical variables (sex, cause of death (natural and non-natural causes)) in all 341 subjects using a correlation matrix with Bonferroni correction. This revealed two positive correlations: hepatocyte with Kupffer cell iron grades (p < 0.01), and male sex with hepatocyte iron grade (p < 0.05). We also analyzed the relationship of steatosis, inflammation, and fibrosis/cirrhosis in 30 subjects with heavy iron staining using a correlation matrix with Bonferroni correction. There were significant positive correlations of steatosis with inflammation (r = 0.5641; p < 0.01), and of inflammation with fibrosis/cirrhosis (r = 0.6124; p < 0.01). CONCLUSIONS: The present results confirm and extend previous observations that heavy liver iron staining is relatively common in African Americans. The pertinence of these observations to genetic and acquired causes of iron overload in African Americans is discussed
    corecore