23,019 research outputs found

    Multiple charge beam dynamics in Alternate Phase Focusing structure

    Full text link
    Asymmetrical Alternate Phase (A-APF) focusing realized in a sequence of 36 Superconducting Quarter Wave Resonators has been shown to accelerate almost 81 % of input Uranium beam before foil stripper to an energy of 6.2 MeV/u from 1.3 MeV/u. Ten charge states from 34+ to 43+ could be simultaneously accelerated with the phase of resonators tuned for 34+. A-APF structure showed unique nature of large potential bucket for charge states higher than that of tuned one. Steering inherent to QWRs can be mitigated by selecting appropriate phase variation of the APF periods and optimization of solenoid field strengths placed in each of the periods. This mitigation facilitates multiple charge state acceleration schemeComment: 10 pages, 8 figure

    Bosonic Super Liouville System: Lax Pair and Solution

    Get PDF
    We study the bosonic super Liouville system which is a statistical transmutation of super Liouville system. Lax pair for the bosonic super Liouville system is constructed using prolongation method, ensuring the Lax integrability, and the solution to the equations of motion is also considered via Leznov-Saveliev analysis.Comment: LaTeX, no figures, 11 page

    Two-Way Training for Discriminatory Channel Estimation in Wireless MIMO Systems

    Full text link
    This work examines the use of two-way training to efficiently discriminate the channel estimation performances at a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. This work improves upon the original discriminatory channel estimation (DCE) scheme proposed by Chang et al where multiple stages of feedback and retraining were used. While most studies on physical layer secrecy are under the information-theoretic framework and focus directly on the data transmission phase, studies on DCE focus on the training phase and aim to provide a practical signal processing technique to discriminate between the channel estimation performances at LR and UR. A key feature of DCE designs is the insertion of artificial noise (AN) in the training signal to degrade the channel estimation performance at UR. To do so, AN must be placed in a carefully chosen subspace based on the transmitter's knowledge of LR's channel in order to minimize its effect on LR. In this paper, we adopt the idea of two-way training that allows both the transmitter and LR to send training signals to facilitate channel estimation at both ends. Both reciprocal and non-reciprocal channels are considered and a two-way DCE scheme is proposed for each scenario. {For mathematical tractability, we assume that all terminals employ the linear minimum mean square error criterion for channel estimation. Based on the mean square error (MSE) of the channel estimates at all terminals,} we formulate and solve an optimization problem where the optimal power allocation between the training signal and AN is found by minimizing the MSE of LR's channel estimate subject to a constraint on the MSE achievable at UR. Numerical results show that the proposed DCE schemes can effectively discriminate between the channel estimation and hence the data detection performances at LR and UR.Comment: 1
    • …
    corecore