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BeamOptics: A Symbolic Platform for Modeling and the
Solution of Beam Optics System

Y. Chao
CERN, Geneva, Switzerland

Abstract

BeamOptics [1] is a Mathematica-based computing platform devoted to the following objectives;

x Structured representation and manipulation of particle beam optics systems with symbolic
capabilities,

x Analytical and numerical modeling of beam optics system behaviors,

x Solution to specific beam optical or general accelerator system problems, in algebraic form in
certain cases, through customized algorithms.

Taking advantage of and conforming to the highly formal and self-contained structure of Mathematica,
BeamOptics provides a unique platform for developing accelerator design and analysis programs.   The
feature of symbolic computation and the ability to manipulate the beam optics system at the programming
language level enable the user to solve or optimize his system with considerably more efficiency, rigour
and insight than can be easily achieved with passive modeling or numerical simulation methods.
BeamOptics is developed with continuous evolution in mind.  New features and algorithms from diverse
sources can be incorporated without major modification, due to its formal and generic structure.

In this report, a survey is given of the basic structure and methodology of BeamOptics, as well as a
demonstration of some of its more specialized applications, and possible direction of evolution.
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I. INTRODUCTION

A symbolic computing platform for beam optics can promise a degree of efficiency,
flexibility, rigour and insight not easily matched by passive numerical modeling or
simulation.  Such a platform has become feasible with the arrival of modern
mathematical software tools, notably Mathematica [1], featuring sophisticated symbolic
and numerical capabilities and programming syntax optimized for concise scientific
computing.  BeamOptics was developed in this spirit.  Beam optics and accelerator
physics models are constructed and analyzed in BeamOptics using the syntactic structure
and functionality of Mathematica, most notably the features of symbolic computation
and list-directed operation, and the ability to manipulate an optical model at the
programming language level.

In this report we start with the difficulties encountered in following the conventional
procedure for solving beam optics and accelerator physics problems, which, although
time-tested, is ripe for improvement given the availability of advanced software tools.
The design principles of BeamOptics are then introduced, the emphasis being on
addressing these difficulties.  This is followed by a delineation of the structure and
existing functionality of BeamOptics, with examples demonstrating typical model
representation, manipulation and analysis using BeamOptics, showing where it is most
advantageous. This report is concluded by outlining current and planned activities on
expanding the scope and community participation, with emphasis on the open-system
nature of BeamOptics.
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II. MOTIVATION FOR BeamOptics

II.1.  Conventional approach to solving optics problems

BeamOptics was developed to provide an alternative paradigm for solving optics-related
design and optimization problems.  Traditionally such problems, be it the design of a
matching section or minimization of radiation-induced emittance growth, are carried out
in these typical steps:

Algebraic Manipulation: Algebraic manipulation is done by hand based on a known
or derived mathematical model, leading to a set of initial conditions.  When the algebra
involved becomes too complicated, either a simplified system has to be substituted or a
special-purpose computer program created to handle the numerical aspect of the problem.
Flexibility of such programs is usually limited.

Numerical Modeling: Initial conditions are used in a numerical modeling
program, examples of which are the multitude of beam optics and particle tracking
packages, which incorporate finer details not accountable by simple algebraic methods.
These packages may have the ability to “scan” the parameter space for insight on the
system, usually done by ad hoc meta-programs, at a penalty of time.

Iteration: Numerical results are examined and compared to the design goal.  The
simple algebraic model is invoked again for interpretation of outcome and improvement
on parameters.  The entire process is iterated until convergence is achieved onto the goal,
within tolerance.

II.2.  Difficulties encountered in the conventional approach

Some counter-productive aspects of the process described above are easily recognized:

Low degree of integration of methods:  The algebraic manipulation is separate from the
numerical modeling, making parameter exploration awkward, inefficient and prone to
human error.

Limitation on parameter exploration:  Parameters are usually explored through
minimization of multi-variable functions, the result of which is not necessarily the
absolute optimum.  Convergence towards optimal solutions may require a number of
iterations, exploring different parts of the parameter space.

Limited flexibility and adaptability:  Tailoring standard packages to a user’s specific
needs at source code level is difficult.  New features, such as a physical process not
conceived at inception, can be difficult to retrofit without altering the syntax or even
structure of the package.

Bulky input format:  Numerical packages usually depend on element-directed input
format, leading to bulky files or procedures.  Creating and editing input files can be time-
consuming and error-prone.

Lack of physical insight:  It is difficult to extract insight on qualitative behaviors based
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on numerical simulations, as opposed to insight derived from analytical expressions.

Need for multiple computing platforms:  For large design projects, there may be a need to
employ several different packages with incompatible data formats, running on different
platforms.

Given the limitation on available software tools in the past, this mode of solving beam
optics problems has been the best approach available.  However, the possibility of
addressing most of these difficulties by developing a package that is Mathematica-based,
yet self-contained, was noticed and seriously explored.  BeamOptics is the outcome of
this effort.  At the current phase of development, BeamOptics already provides a
platform for performing optics and accelerator physics related design and analysis in a
manner free of many of the above problems, as will be shown in the next section.  The
important point is, however, that given its flexible structure and ease to evolve, with
Mathematica or independent thereof, it is much better poised to address challenges,
whether existing or anticipated, than the traditional paradigm.
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III. DESIGN PRINCIPLES FOR BeamOptics

BeamOptics offers a self-contained package, less prone to difficulties encountered in the
traditional paradigm for solving beam optics problems.  This can be attributed to the
following design principles.

III.1.  Self-contained infrastructure

BeamOptics allows the user to carry out the complete analysis of a problem without
having to venture beyond the provided framework.  It is not realistic for BeamOptics to
include all conceivable high-level beam optics algorithms at inception.  Instead it
provides a standard infrastructure versatile enough for the user to build these algorithms
on, without having to supplement it with the user’s own overhead code or to channel it to
another package on a different platform.  In addition to specially-developed beam optical
components, the entire algebraic and numerical infrastructure of Mathematica is
available in BeamOptics.  As a result, the user is free from the need of ad hoc overhead
codes and can easily extend the scope of an ongoing project while staying within the
same integrated platform.  An additional advantage of building an optics analysis on the
BeamOptics platform is that once a system is realized through its carefully planned
framework, with internal consistency and exception-handling already worked out, the
resulting representation of the system can be used for other analyses.  This greatly
enhances the option of code recycling.

III.2.  Flexibility at low level

BeamOptics allows the user to manipulate the system being studied at a very low level,
thus affording flexibility not possible with fixed, special-purpose packages.  By casting
the basic building blocks of BeamOptics as Mathematica entities, the same repertoire of
Mathematica methods for object manipulation is available for BeamOptics objects.  The
representation of an optical system, instead of being a frozen set of input/output data
beyond the user’s control, can be interactively manipulated.  Furthermore, these
operations can be systematically programmed at the Mathematica language level,
making possible the integration of multi-purpose design projects under a single scheme.

Connecting BeamOptics to the input and output ends of an independent Mathematica
analysis can also be done seamlessly, taking advantage of the power of the latter at
solving specialized physical problems.

III.3.  Extensive use of list-directed structure and operations

The powerful feature of list-directed operations in Mathematica is maximally exploited
in BeamOptics. Almost no optics or accelerator physics related problem can entirely
avoid evaluation on a list structure when it comes to application to real machines.  Many
accelerator problems are indeed characterized mainly by effects accumulated over long
lists of elements.  By exploiting the powerful list-directed operations of Mathematica and
generalizing the syntax as much as possible to be list-compatible as part of the design
philosophy, a wide range of accelerator-related mathematical and database operations can
be realized with compact, efficient and less-error-prone commands in BeamOptics.
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III.4.  Ability to perform algebraic computation

Algebraic (symbolic) computation, a natural alternative mode of computation to many
numerical functions of Mathematica, is adopted in the same spirit by BeamOptics.  At
the level of generic building blocks, no distinction is made between symbolic, numerical,
or mixed representations.  Conversion from symbolic to numerical representation can
happen at any stage.  This offers the user freedom in attaching emphasis to maintaining
rigour and gaining insight on the one hand, or solving problems efficiently and practically
on the other, or anything in between.  This again is accomplished without resorting to
disjoint packages on different software platforms.  When it is practical, the ability to
carry out analysis in algebraic form in the complete or partial parameter space provides
exact solutions without resorting to numerical techniques.

It should be noted that a well-defined approach to obtain solutions for optical modules [3]
has been developed using BeamOptics when the model is not algebraically solvable.
This typically involves the following steps:

x formulate the problem with an equal number of variables and constraints,

x obtain existence conditions for solutions,

x obtain exact solutions in the thin lens model,

x perform numerical optimization in the neighborhood of each thin lens solution to
obtain corresponding thick lens solutions.

Notice that this approach explores all the theoretical local minima of the system, thus it
does not miss the global minimum, as opposed to usual numerical minimization methods
that strongly depend on the initial condition.

Another new BeamOptics function [4] provides a deterministic algorithm for converting
a thin lens system of a specific type to the equivalent thick lens system.

An additional advantage of an algebraically described optical system is that all lattice and
beam parameters can be readily calculated along the continuous longitudinal dimension.
With a piece-wise numerically represented system this has to be done by modifying the
element structure of the beamline.

III.5.  Open system and constant evolution

An important design feature of BeamOptics is that, as a result of the self-contained
infrastructure and flexibility at low level, it is an open system ready for straightforward
and seamless incorporation of new algorithms.   Development and incorporation of new
modules require only basic knowledge in the Mathematica language and BeamOptics
syntax.  The current phase of scope extension involves contribution from diverse sources
on many different subjects.
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IV. STRUCTURE AND EXISTING FUNCTIONALITY OF
BeamOptics

The BeamOptics package is made up of Mathematica functions organized by topics in
beam optics and accelerator physics.  The backbone that supports these functions and
makes them mutually compatible is the scheme for representing optical elements and
beam lines in terms of transfer matrices.  This can be done algebraically, numerically, or
as a combination of both.   The optical transfer matrices representing individual elements
or sections of the beam line are in full view of the user and open for manipulation.  Beam
lines, known as Channels in BeamOptics, take on the same structure as a List  in
Mathematica, allowing easy single-command manipulations, such as query by index,
simultaneous operation on all elements, line inversion, splicing etc..   This also opens up
the possibility for the user, taking advantage of the flexible and versatile List  structure in
Mathematica, to create new functions with more physical content that can be called as
inline commands on a Channel.  This is in fact the standard mode for incorporating new
functions.

Existing functions can be grouped into the following categories.

IV.1.  Basic tools for system building.

At the ground level, BeamOptics provides the user with tools for defining optical
elements, geometry, and building Channels from them as described above.

IV.2.  Optical modules.

These consist of the next level building blocks in BeamOptics for function-oriented
modules.  An extensive set of modules is available with more being developed.  The
possibility of algebraic computation makes these useful tools for system design and
optimization.

IV.3.  Standard analytical functions of an optical system.

Baseline geometrical properties, transfer matrices, envelope functions, etc. are standard
built-in functions.  At present only formulation based on decoupled transverse optics is
implemented and fully tested.  Extension into 4-dimensional coupled transverse optics is
planned in a future upgrade.

IV.4.  Perturbative calculations

Functions are developed to track perturbation around the central orbit due to linear
elements, including dispersive effects, compounded effects in tracking with symbolic
option, and response matrices describing trajectory and beam envelope responses to
control elements for a given Channel.

IV.5.  Accelerator physics related phenomena and processes

This includes non-dissipative effects such as synchrotron radiation, intra-beam scattering,
etc.  An extended set of such functions is planned.
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IV.6.  Visualization tools

The powerful graphical capability of Mathematica is naturally available to BeamOptics
as an organic component.  Functions directing intermediate or final output to the graphics
functions at the programming language level allow the user to visualize the calculation
interactively without ad hoc add-on graphics software. The Mathematica-based package
Geometrica can be loaded for rendering geometrical layout of beamlines and particle
trajectories, with realistic element dimensions. In most cases, due to analytically-
represented lattice and beam parameter functions, plots can be rendered with respect to a
continuous longitudinal coordinate, as opposed to piece-wise plots typically generated by
purely numerical packages.

IV.7.  Graphical user interface

Various graphical user interface facilities are available, such as a clickable palette for
generating syntactic templates for programmers of BeamOptics.
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V. EXAMPLES

Some examples illustrate where BeamOptics can be advantageous in accelerator design
and analysis.

V.1.  Implementing FFAG Design in BeamOptics and Study of Chromatic
Behavior of Closed Orbits

Machine description

The machine is an FFAG ring [5] with 8 periods. A period consists of two combined
function dipoles separated by a drift space. One magnet is focusing and the other is
defocusing in the horizontal plane. The two angles F

T and D
T  are of opposite signs.

�thetaF, thetaD �  Pi s180 �33.75, �11.25 �

The reference dipole is a sector magnet whose length is the length of the central orbit.
The radii Fr and Dr  are

�rF, rD �  �1.3, �2.535 �

The focusing strengths Fk and Dk  are

�kF, kD �  �0.348548, �0.0305544 �

Their edges are such that the property of similar orbits applies to that machine.

�upF, downF, upD, downD �  

�0, thetaF � 0.15, 0.15 � thetaF, Pi s8 � 0.25 �

For graphics representation, it is useful to include color options. Here F and D magnets
are colored in Red and Blue respectively.

�colF, colD �  �RGBColor #1, 0, 0 ', RGBColor #0, 0, 1 '�

The magnets Fb and Db  are defined by the function Bend. The arguments are their
lengths, deflection angles, and focusing strengths, options to define the angle of the end
faces with respect to the reference orbit, and graphical properties.



9

�bF, bD �  

Bend#�rF, rD � �thetaF, thetaD �,

�thetaF, thetaD �,
�kF, kD �,
�EdgeUp � upF, EdgeUp � upD�,
�EdgeDown� downF, EdgeDown � downD�,
�OpticsStyle � �colF �, OpticsStyle � �colD ��'

Several properties of list processing have been used here to make the statement concise.
The lists play the same role as single components. The first argument, which is the
product of the list of radii and of the list of angles, computes to the list of lengths
automatically. Then the attribute Listable attached to Bend in BeamOptics splits the
single Bend function into a list of two Bend functions according to the rule

%HQG>^D�E`�^F�G`����@ ^%HQG>D�F����@�%HQG>E�G����@`

A drift space is defined by the function SS (for Straight Section) and has the length as the
unique argument:

s  SS#.75 '

The topology of a beam line is characterized by the function Channel. The half period of
the FFAG machine is

ch  Channel #bF, bD, s '

A full super-period results from the concatenation of ch with its mirror image.

period  Mirror #ch'

The complete ring is made of eight periods

ring  Repeat #period, 7 '

It can be drawn using the function Draw.

Graphical representation

The ring can be drawn using Draw. The magnets are then represented according to the
OpticsStyle options and the reference orbit is superimposed, as shown in Figure 1.

g1  Draw#ring ';
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Characteristic functions

The E functions and the orbit dispersion can be calculated using the function HalfPeriod
since the period of the machine is symmetric.

hp  HalfPeriod #ch'

�OpticsPlot � +h Graphics h/,

SigmaEnd � �Sigma #4.10126 , 0 ', Sigma #2.39644 , 0 '�,
Tunes � �0.14942 , 0.122071 �,

DVectorEnd �DVector #1.24016 , 0 ', Path � 0.474349 �

Figure 1
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The output is a list of replacement rules whose left hand sides are the names of the
variables and the right hand sides the value of the variable.  The graphical output of the
lattice functions is shown in Figure 2. They can be used, for instance, to show the
similarity of the orbits of an FFAG machine (Figure 3).

dv  DVectorEnd s. hp;
g2  AbsoluteDPlot #ring, dv, ��.5, .5 �,

PlotStyle � RGBColor #0, 1, 0 '';

0 0.5 1 1.5 2
s #m'

1.5

2

2.5

3

3.5

4

E #m' D #m'

Figure 2
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It has to be noted that, in contrast with
other optics programs, the orbit
dispersion can be drawn about the
curved reference orbit. This is useful
in the present case and for
isochronous machines in which the
variations of the path length with
momentum cannot be understood if
the orbit dispersion is plotted about a
straight reference orbit.

The following command combines the
machine element layout with the
closed orbits at different momentum
offsets, shown in Figure 4:

Show#g1, g2 ';
Figure 3

Figure 4
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V.2.  Analytical Study of the Matching Triplet

At the present time the FFAG triplet is being analyzed using BeamOptics.  In the
following we show a similar application of BeamOptics to a pure quadrupole triplet,
which also helps demonstrate how a BeamOptics function is defined and used.

Symmetric matching triplet

A symmetric triplet consists of 3 quadrupoles with alternating focal lengths f1, f2 and f1,
interleaved with inner drift lengths d and outer drift lengths l, and it is reflectively
symmetric. In the thin lens approximation, a symmetric triplet has enough variables to
match an arbitrary incoming Twiss parameter pair (E,D) to an arbitrary outgoing Twiss
parameter pair. Tracking from input to output provides a system of four non-linear
equations which, after successive elimination, gives a cubic equation for one variable [6]:

z3
�

2 d
c

z2
� z �

d2 � c2

c +bc � ad/
 0

a  
t h,11 � t v,11 � 2

4

b  
t h,11 � t v,11

4

c  
t h,21 � t v,21

4

d  
t h,21 � t v,21

4

where th,mn and tv,mn are the elements of the horizontal and vertical transfer matrices
respectively.  At most three real solutions can be found for z.  The parameters f1, f2, l and
d are functions of the variable z and the parameters a, b, c, d.  A special solution occurs
when two crossovers or a crossover and a waist are to be matched. In this case the focal
lengths are equal in absolute value

f 1  �f 2  f

and the parameters of the triplet take the simple form:

f  
D1 � D2

J1 � J2
, d  f �1 �

« D1 � D2 «
D0

, l  
D0« D1 � D2 « d

where

D0  
r
E1 J2 � E2 J1 � 2 +1 � D1 D2/

with the other variables being Twiss parameters in the horizontal plane.
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This result is implemented as a BeamOptics function with the syntax

MatchingTriplet[ VV 1 h , VV 1 v , VV 2 h , VV 2 v , opts]

where the V’s represent the (E,D) pair in both planes at entry and exit of the triplet, and
opts refers to graphics options.

Using the Optimum Optical Systems method [3], it is possible to build a triplet made of
finite length quadrupoles. Each solution in the thin lens model is one initial condition for
a numerical minimization convergent in the neighborhood of the thin lens solution. In the
case of thick lenses, the syntax is the following:

MatchingTriplet[ VV 1 h , VV 1 v , VV 2 h , VV 2 v , l1, l2, opts]

with l1 and l2 being the finite lengths of the 2 types of quadrupoles.  In this case opts as
options can include parameters for the numerical minimization, such as maximum
number of iterations.

Application of the function MatchingTriplet in the thin lens solution

One starts with thin lenses. For the following matching conditions imposed by Twiss
parameters, only two real solutions exist, and the program returns both solutions
numerically in the form of a 2 element-list.

MatchingTriplet #Sigma#5, 8 ', Sigma #5, �8', Sigma #2, 0 ',
Sigma#2, 0 ''

�OpticsPlot � �h Graphics h, h Graphics h�,

BeamLine � �Channel #SS#0.0946461 ',

Q#�0.239198 ', SS #0.302262 ', Q#0.310575 ',
SS#0.302262 ', Q#�0.239198 ', SS #0.0946461 '',

Channel #SS#0.658155 ', Q#�0.64 ', SS #1.02281 ',

Q#0.64 ', SS #1.02281 ', Q#�0.64 ', SS #0.658155 ''��

The plots of Ex and Ey for these 2 solutions are rendered as part of the output, as shown in
Figures 5 and 6.
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Application of the function MatchingTriplet in the thick lens solution

When switching to thick lenses, the quadrupole lengths have to be smaller than the
spacing between the thin lenses. By simply adding these lengths in the input to the
function MatchingTriplet, a perfect crossover is reached with an output sigma slightly
different from the requested one.
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s #m'
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E #m'

Figure 5
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E #m'

Figure 6
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Very thin quadrupoles are compatible with both of the previous solutions:

MatchingTriplet #Sigma#5, 8 ', Sigma #5, �8', Sigma #2, 0 ',
Sigma#2, 0 ', .05, .05 '

The output now also includes final Twiss parameters matched by the solutions

�OpticsPlot � �h Graphics h, h Graphics h�,

BeamLine �

�Channel #SS#0.0696461 ', Q#0.05, �86.1333 ',
SS#0.278258 ', Q#0.05 , 62.6962 ', SS #0.278258 ',

Q#0.05 , �86.1333 ', SS #0.0696461 '',

Channel #SS#0.633155 ', Q#0.05 , �31.2239 ',

SS#0.995709 ', Q#0.05 , 31.2766 ', SS #0.995709 ',

Q#0.05 , �31.2239 ', SS #0.633155 ''�,

SigmaEnd � ��Sigma #3.0574 , �2.52413 ',
Sigma #3.05742 , 2.52413 '�,

�Sigma #1.80035 , 0.0654468 ',

Sigma #1.80035 , �0.0654468 '���

Notice that some vertical lines in the plots (Figures 7 and 8) now represent the
longitudinal extents of the thick quadrupoles.
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s #m'
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E #m'

Figure 7
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For longer quadrupoles, the first solution becomes unphysical, and is automatically
discarded (Figure 9):

MatchingTriplet #Sigma#5, �8', Sigma #5, 8 ', Sigma #2, 0 ',
Sigma#2, 0 ', .2, .2 '

�OpticsPlot � �h Graphics h�,

BeamLine � �Channel #SS#0.558155 ',
Q#0.2, 7.7992 ', SS #0.916689 ',

Q#0.2, �7.83882 ', SS #0.916689 ',

Q#0.2, 7.7992 ', SS #0.558155 ''�,
SigmaEnd � ��Sigma #1.27448 , �0.173455 ',

Sigma #1.27448 , 0.173454 '���
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s #m'
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15

20

E #m'

Figure 8
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One may notice that the final matched Twiss parameters are not very close to the target
values.  This is in large part due to the fact that the default triplet solution, with the option
Variable set to 1, insists on perfect crossover of the Twiss parameters at the expense of
matching accuracy.  With this option Variable set to different values (2 to 4), the
constraint on perfect crossover is relaxed to different degrees and a solution much closer
to the target Twiss parameters can be reached (Figure 10).

Timing �MatchingTriplet #Sigma#5, �8', Sigma #5, 8 ',
Sigma#2, 0 ', Sigma #2, 0 ', .2, .2, Variables �! 3'

�61.18 Second , �OpticsPlot � �h Graphics h�,

BeamLine � �Channel #SS#0.558155 ', Q#0.2, 8.52599 ',

SS#0.774936 ', Q#0.2, �8.75977 ', SS #0.774936 ',
Q#0.2, 8.52599 ', SS #0.558155 ''�,

SigmaEnd � ��Sigma #1.9867 , 0.00311733 ',

Sigma #1.92143 , �0.188484 '����
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Figure 9
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VI. PLANNED UPGRADES AND CURRENT ACTIVITIES

The content of all the categories of BeamOptics is being expanded at the moment, with
contributions from diverse sources, and a few new directions of extension are presented
below.

VI.1.  Scope extension

Translators from standard optics programs:  The models of many existing accelerator
systems are stored in the format of traditional optics and other machine design packages.
These are nonetheless very active files being constantly updated and processed for new
information.  We are certain that these model-describing files can be the basis on which
to extract even more knowledge and performance enhancement if existing and planned
BeamOptics functions can be brought to operate on them.  Translator programs are
important interfacing tools for realizing this.

Accelerator diagnostics and control algorithms:  This is an area rich in both established
and novel schemes for performing the very important task of operating and improving an
accelerator system.  Most of these schemes are well suited to the conversion into
functions operating on a Channel object in BeamOptics.  The latter actually corresponds
to a full theoretical database of the machine, typically the object acted on by such
algorithms.  BeamOptics, in providing this theoretical database, can then serve as a very
efficient test bench for accelerator diagnostics and control algorithms.  Currently we are
limiting the scope to transverse dimensions only.

An existing machine control architecture [7] that has been implemented online at CERN
can serve as a model for future direct link between the above-mentioned diagnostics and
control algorithms in BeamOptics, and accelerator control systems and database.

4-dimensional optics:  Work on extending BeamOptics into the full 4-space in the
transverse dimensions is under way.  A beta version of 4D BeamOptics will be released
when development of the planned 4D functions is complete.

Extended tracking functions:  Various tracking functions, including nonlinear elements
and special treatment for elements such as solenoids, will be added.

Longitudinal operations:  In the initial stage, this will include transfer properties of
elements having effects on longitudinal beam coordinates, aimed at studying longitudinal
dynamics in transfer lines, and calculations of longitudinal phase space characteristics of
circular machines.

VI.2.  Infrastructure enhancement

The following possibilities of enhancing the infrastructure of BeamOptics are being
studied.

Definition of interface between codes:  Work is in progress to reach consensus on a
standard of code interface, in view of convertibility issues between BeamOptics and
other accelerator design packages, and anticipated incorporation of codes from
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contributory sources.

Incorporation of compiled codes through MathLink : Work is in progress to Assess the
need of and options for streamlining the “production versions” of some core algorithms
via MathLink  and compiled codes.  This is expected to bring about substantial gain in
speed when applied to large systems in real time, while still interfacing with BeamOptics.

VI.3.  Evolution strategy:  community participation and user/developer support

Concurrent with work on extending its scope, the evolutionary strategy for BeamOptics
is being planned. The emphasis is on enhancing its appeal and usefulness to a wider
audience in the accelerator community.  To this end we are engaged in the following
activities:

Community participation:  We are actively soliciting collaboration and contribution from
the accelerator community, possibly extending to a standing community-wide forum on
BeamOptics.

User/developer support:  Accompanying the release of BeamOptics, a web site [8] has
been created for downloading updated versions, documentation, and dialogue with users
and developers.   A related supporting document under preparation is a future CERN
Yellow Report, closely correlated to the feature and functionality of BeamOptics,
providing theoretical bases for the latter.  This report will also describe general strategies
for designing new accelerators on these theoretical bases.
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