174 research outputs found

    Evaluation of pollen viability, stigma receptivity and fertilization success in Lagerstroemia indica L.

    Get PDF
    To provide theoretical basis for artificial pollination in Lagerstroemia indica L., pollen viability and stigma receptivity were tested and the morphological change of stigma was observed. Pollen viability tested by in vitro culture, stigma receptivity examined by benzidine-H2O2 testing and fruit set estimated by field artificial pollination were analyzed in this study. The maximum pollen viability was observed at 10:00 am one day of anthesis (DA), of which ‘Hong Wei’ (46.2%) was significantly lower than that of ‘Yin Wei’ (56.8%) and ‘Zi Wei’ (62.5%). The stigma receptivity of the three crape myrtle cultivars was sustained for eight days, which was 95.7 to 96.9% at 1 DA to two days after anthesis (DAA), then declined to 75.5 to 79.9% at 3 to 4 DAA and 50.6 to 59.7% at 5 to 6 DAA, and only 29.5% at 7 DAA. Higher stigma receptivity was associated with columnar style, upward stigma, green and wet papillae and copious exudates at stage 1 (1 DA to 2 DAA). Frequencies of fruit set at stage 1 (74.4%) and stage 2 (3 to 4 DAA) (78.9%) were significantly higher than that at stage 3 (5 to 6 DAA) (21.9%). So, selecting pollen at 10:00 am 1 DA and stigma of 1 DA to 4 DAA was a strategy to enhance fruit set in the future artificial hybridizations for crape myrtle.Key words: Lagerstroemia indica L., dimorphic pollen, pollen viability, stigma receptivity, fruit set

    The prognostic value of CZT SPECT myocardial blood flow (MBF) quantification in patients with ischemia and no obstructive coronary artery disease (INOCA): a pilot study.

    Get PDF
    BACKGROUND Despite the demonstrated adverse outcome, it is difficult to early identify the risks for patients with ischemia and no obstructive coronary artery disease (INOCA). We aimed to explore the prognostic potential of CZT SPECT in INOCA patients. METHODS The study population consisted of a retrospective cohort of 118 INOCA patients, all of whom underwent CZT SPECT imaging and invasive coronary angiography (ICA). Dynamic data were reconstructed, and MBF was quantified using net retention model. Major adverse cardiovascular events (MACEs) were defined as cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, heart failure, late coronary revascularization, or hospitalization for unstable angina. RESULTS During a median follow-up of 15 months (interquartile range (IQR) 11-20), 19 (16.1%) MACEs occurred; both stress myocardial blood flow (sMBF) ([Formula: see text]) and coronary flow reserve (CFR) ([Formula: see text]) were significantly lower in the MACE group. Optimal thresholds of sMBF<3.16 and CFR<2.52 were extracted from the ROC curves, and both impaired sMBF (HR: 15.08; 95% CI 2.95-77.07; [Formula: see text]) and CFR (HR: 6.51; 95% CI 1.43-29.65; [Formula: see text]) were identified as prognostic factors for MACEs. Only sMBF<3.16 (HR: 11.20; 95% CI 2.04-61.41; [Formula: see text]) remained a robust predictor when sMBF and CFR were integrated considered. Compared with CFR, sMBF provides better prognostic model discrimination and reclassification ability (C-index improvement = 0.06, [Formula: see text]; net reclassification improvement (NRI) = 0.19; integrated discrimination improvement (IDI) = 0.10). CONCLUSION The preliminary results demonstrated that quantitative analysis on CZT SPECT provides prognostic value for INOCA patients, which may allow the stratification for early prevention and intervention

    Correction to: Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    FT4/FT3 ratio: A novel biomarker predicts coronary microvascular dysfunction (CMD) in euthyroid INOCA patients.

    Get PDF
    Background Ischemia and no obstructive coronary artery disease (INOCA) patients who presented coronary microvascular dysfunction (CMD) demonstrate a poor prognosis, yet the risk factors for CMD remain unclear. Subtle changes in thyroid hormone levels within the normal range, especially the free thyroxine (FT4)/free triiodothyronine (FT3) ratio, have been shown to regulate the cardiovascular system. This prospective study investigated the correlation between FT4/FT3 ratio and CMD in euthyroid patients with INOCA. Methods This prospective study (www.chictr.org.cn/, ChiCTR2000037112) recruited patients with myocardial ischemia symptoms who underwent both coronary angiography (CAG) and myocardial perfusion imaging (MPI) with dynamic single-photon emission computed tomography (D-SPECT). INOCA was defined as coronary stenosis< 50% and CMD was defined as coronary flow reserve (CFR)<2.5. All patients were excluded from abnormal thyroid function and thyroid disease history. Results Among 71 INOCA patients (15 [21.1%] CMD), FT4 and FT4/FT3 ratio in CMD group were significantly higher and both showed significantly moderate correlation with CFR (r=-0.25, p=0.03; r=-0.34, p=0.003, respectively). The ROC curve revealed that FT4/FT3 ratio had the highest efficacy for predicting CMD with an optimized cutoff value>3.39 (AUC 0.78, p<0.001, sensitivity, 80.0%; specificity, 71.4%). Multivariate logistic regression showed that FT4/FT3 ratio was an independent predictor of CMD (OR 7.62, 95% CI 1.12-51.89, p=0.038, P for trend=0.006). Conclusion In euthyroid INOCA patients, increased FT4/FT3 ratio levels are associated with the occurrence of CMD, presenting a novel biomarker for improving the risk stratification

    Screening chemical modulators of benzoic acid derivatives to improve lipid accumulation in Schizochytrium limacinum SR21 with metabolomics analysis.

    Get PDF
    Background(#br) Schizochytrium sp. is a marine fungus with great potential as an alternative commercial source of lipids rich in polyunsaturated fatty acids (PUFAs). To further increase lipid accumulation in Schizochytrium sp., the effect of exogenous additives has become one of the hotspots of current research. Although benzoic acid derivatives showed positive effects on lipid accumulation in Schizochytrium , the biochemical mechanism needs further investigation.(#br)Results(#br)Four benzoic acid derivatives (sodium benzoate, p -aminobenzoic acid, p -methyl benzoic acid and folic acid) were screened and evaluated for their effect on lipid accumulation in Schizochytrium limacinum SR21. The lipid yield was increased by 56.84% with p -aminobenzoic acid ( p -ABA) at a concentration of 200 mg/L among the four tested chemical modulators. The metabolomics analysis showed that 200 mg/L p -ABA was optimal for promoting glucose catabolism in glycolysis with an increase in the mevalonate pathway and a weakening of the tricarboxylic acid (TCA) cycle. Moreover, p -ABA increased NADPH generation by enhancing the pentose phosphate pathway (PPP), ultimately redirecting the metabolic flux to lipid synthesis. Fed-batch fermentation further proved that p -ABA could significantly increase the yield of lipid by 30.01%, reaching 99.67 g/L, and the lipid content was increased by 35.03%, reaching 71.12%. More importantly, the yields of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were increased by 33.28% and 42.0%, respectively.(#br)Conclusion(#br)The addition of p -ABA could promote the synthesis of tetrahydrofolate, enhancing NADPH, which ultimately promoted the flow of carbon flux to lipid synthesis. These findings provide a valuable strategy for improving the lipid accumulation in Schizochytrium by additives

    Beta-glucan alters gut microbiota and plasma metabolites in pre-weaning dairy calves

    Get PDF
    The present study aims to evaluate the alterations in gut microbiome and plasma metabolites of dairy calves with β-glucan (BG) supplementation. Fourteen healthy newborn dairy calves with similar body weight were randomly divided into control (n = 7) and BG (n = 7) groups. All the calves were fed on the basal diet, while calves in the BG group were supplemented with oat BG on d 8 for 14 days. Serum markers, fecal microbiome, and plasma metabolites at d 21 were analyzed. The calves were weaned on d 60 and weighed. The mean weaning weight of the BG group was 4.29 kg heavier than that of the control group. Compared with the control group, the levels of serum globulin, albumin, and superoxide dismutase were increased in the BG group. Oat BG intake increased the gut microbiota richness and decreased the Firmicutes-to-Bacteroidetes ratio. Changes in serum markers were found to be correlated with the plasma metabolites, including sphingosine, trehalose, and 3-methoxy-4-hydroxyphenylglycol sulfate, and gut microbiota such as Ruminococcaceae_NK4A214, Alistipes, and Bacteroides. Overall, these results suggest that the BG promotes growth and health of pre-weaning dairy calves by affecting the interaction between the host and gut microbiota

    Modulating gut microbiota and metabolites with dietary fiber oat β-glucan interventions to improve growth performance and intestinal function in weaned rabbits

    Get PDF
    The effect of oat β-glucan on intestinal function and growth performance of weaned rabbits were explored by multi-omics integrative analyses in the present study. New Zealand White rabbits fed oat β-glucan [200 mg/kg body weight (BW)] for 4 weeks, and serum markers, colon histological alterations, colonic microbiome, colonic metabolome, and serum metabolome were measured. The results revealed that oat β-glucan increased BW, average daily gain (ADG), average daily food intake (ADFI), and decreased serum tumor necrosis factor-α (TNF-α) interleukin-1β (IL-1β), and lipopolysaccharide (LPS) contents, but did not affect colonic microstructure. Microbiota community analysis showed oat β-glucan modulated gut microbial composition and structure, increased the abundances of beneficial bacteria Lactobacillus, Prevotellaceae_UCG-001, Pediococcus, Bacillus, etc. Oat β-glucan also increased intestinal propionic acid, valeric acid, and butyric acid concentrations, decreased lysine and aromatic amino acid (AAA) derivative contents. Serum metabolite analysis revealed that oat β-glucan altered host carbohydrate, lipid, and amino acid metabolism. These results suggested that oat β-glucan could inhibit systemic inflammation and protect intestinal function by regulating gut microbiota and related metabolites, which further helps to improve growth performance in weaned rabbits
    • …
    corecore