126 research outputs found

    Advancing Stroke Genomic Research in the Age of Trans-Omics Big Data Science: Emerging Priorities and Opportunities

    Get PDF
    Background—We systematically reviewed the genetic variants associated with stroke in genome-wide association studies (GWAS) and examined the emerging priorities and opportunities for rapidly advancing stroke research in the era of Trans-Omics science. Methods—Using the PRISMA guideline, we searched PubMed and NHGRI- EBI GWAS catalog for stroke studies from 2007 till May 2017. Results—We included 31 studies. The major challenge is that the few validated variants could not account for the full genetic risk of stroke and have not been translated for clinical use. None of the studies included continental Africans. Genomic study of stroke among Africans presents a unique opportunity for the discovery, validation, functional annotation, trans-omics study and translation of genomic determinants of stroke with implications for global populations. This is because all humans originated from Africa, a continent with a unique genomic architecture and a distinctive epidemiology of stroke; as well as substantially higher heritability and resolution of fine mapping of stroke genes. Conclusion—Understanding the genomic determinants of stroke and the corresponding molecular mechanisms will revolutionize the development of a new set of precise biomarkers for stroke prediction, diagnosis and prognostic estimates as well as personalized interventions for reducing the global burden of stroke

    Genetics of the thrombomodulin-endothelial cell protein C receptor system and the risk of early-onset ischemic stroke

    Get PDF
    Background and Purpose: Polymorphisms in coagulation genes have been associated with early-onset ischemic stroke. Here we pursue an a priori hypothesis that genetic variation in the endothelial-based receptors of the thrombomodulin-protein C system (THBD and PROCR) may similarly be associated with early-onset ischemic stroke. We explored this hypothesis utilizing a multi-stage design of discovery and replication. Methods: Discovery was performed in the Genetics-of-Early-Onset Stroke (GEOS) Study, a biracial population-based case-control study of ischemic stroke among men and women aged 15-49 including 829 cases of first ischemic stroke (42.2% African-American) and 850 age-comparable stroke-free controls (38.1% African-American). Twenty-four single-nucleotide-polymorphisms (SNPs) in THBD and 22 SNPs in PROCR were evaluated. Following LD pruning (r2≥0.8), we advanced uncorrelated SNPs forward for association analyses. Associated SNPs were evaluated for replication in an early-onset ischemic stroke population (onset-age\u3c60 years) consisting of 3676 cases and 21118 non-stroke controls from 6 case-control studies. Lastly, we determined if the replicated SNPs also associated with older-onset ischemic stroke in the METASTROKE data-base. Results: Among GEOS Caucasians, PROCR rs9574, which was in strong LD with 8 other SNPs, and one additional independent SNP rs2069951, were significantly associated with ischemic stroke (rs9574, OR = 1.33, p = 0.003; rs2069951, OR = 1.80, p = 0.006) using an additive-model adjusting for age, gender and population-structure. Adjusting for risk factors did not change the associations; however, associations were strengthened among those without risk factors. PROCR rs9574 also associated with early-onset ischemic stroke in the replication sample (OR = 1.08, p = 0.015), but not older-onset stroke. There were no PROCR associations in African-Americans, nor were there any THBD associations in either ethnicity. Conclusion: PROCR polymorphisms are associated with early-onset ischemic stroke in Caucasians

    miRNA expression differentiation induced by polyploidization in newly formed triploids of black poplar

    Get PDF
    During whole genomic duplication (WGD) events, micro RNAs (miRNAs) are involved in stabilization of chromatin and genome and epigenetic regulation of gene expression. In this study, a newly induced triploid group of hybrids between sect. Tacamahaca and sect. Aigeiros in Populus, was characterized for genome-wide miRNA expression after WGD. Seven miRNA libraries (male parent, female parent, group of triploid offspring’s, group of diploid offspring, and three triploid individuals) were constructed and variation of miRNA expression from diploid parents to triploid offspring’s as well as distinction between triploid and diploid offspring were analyzed. The results showed that a total of 240 miRNAs were predicted including 187 known miRNAs and 53 novel miRNAs. 81.25% of miRNAs in triploid offspring were non-additively expressed in which 52.31% were down-regulated. A novel miRNA with 24nt in length choosing adenine as its first base was found in triploid offspring group suggesting its potential role in regulation of DNA methylation after WGD. A total of 18 novel miRNAs were specifically expressed in the library of triploid group. Targeted genes of different expressed miRNAs in three comparison sets (triploid offspring group vs female parent, male parent, and diploid offspring group) were all enriched in ADP binding (GO: 0043531; FDR < 0.05). KEGG enrichment pathway of all three comparison sets was plant-pathogen interaction. This study revealed an essential role of miRNAs involving in epigenetic regulation after WGD in poplar and provided a good model for further studies of polyploidization advantages in woody plant

    Genome response to tissue plasminogen activator in experimental ischemic stroke

    Get PDF
    Background: Tissue plasminogen activator (tPA) is known to have functions beyond fibrinolysis in acute ischemic stroke, such as blood brain barrier disruption. To further delineate tPA functions in the blood, we examined the gene expression profiles induced by tPA in a rat model of ischemic stroke. Results: tPA differentially expressed 929 genes in the blood of rats (p ≤ 0.05, fold change ≥ |1.2|). Genes identified had functions related to modulation of immune cells. tPA gene expression was found to be dependent on the reperfusion status of cerebral vasculature. The majority of genes regulated by tPA were different from genes regulated by ischemic stroke. Conclusions: tPA modulates gene expression in the blood of rats involving immune cells in a manner that is dependent on the status of vascular reperfusion. These non-fibrinolytic activities of tPA in the blood serve to better understand tPA-related complications.Glen C Jickling, Xinhua Zhan, Bradley P Ander, Renee J Turner, Boryana Stamova, Huichun Xu, Yingfang Tian, Dazhi Liu, Ryan R Davis, Paul A Lapchak and Frank R Shar

    Bilateral Habenula deep brain stimulation for treatment-resistant depression: clinical findings and electrophysiological features.

    Get PDF
    Deep brain stimulation (DBS) of structures in the brain's reward system is a promising therapeutic option for patients with treatment-resistant depression (TRD). Recently, DBS of the habenula (HB) in the brain's anti-reward system has also been reported to alleviate depressive symptoms in patients with TRD or bipolar disorder (BD). In this pilot open-label prospective study, we explored the safety and clinical effectiveness of HB-DBS treatment in seven patients with TRD or BD. Also, local field potentials (LFPs) were recorded from the patients' left and right HB to explore the power and asymmetry of oscillatory activities as putative biomarkers of the underlying disease state. At 1-month follow-up (FU), depression and anxiety symptoms were both reduced by 49% (n = 7) along with substantial improvements in patients' health status, functional impairment, and quality of life. Although the dropout rate was high and large variability in clinical response existed, clinical improvements were generally maintained throughout the study [56%, 46%, and 64% reduction for depression and 61%, 48%, and 70% reduction for anxiety at 3-month FU (n = 5), 6-month FU (n = 5), and 12-month FU (n = 3), respectively]. After HB-DBS surgery, sustained improvements in mania symptoms were found in two patients who presented with mild hypomania at baseline. Another patient, however, experienced an acute manic episode 2 months after surgery that required hospitalization. Additionally, weaker and more symmetrical HB LFP oscillatory activities were associated with more severe depression and anxiety symptoms at baseline, in keeping with the hypothesis that HB dysfunction contributes to MDD pathophysiology. These preliminary findings indicate that HB-DBS may offer a valuable treatment option for depressive symptoms in patients who suffer from TRD or BD. Larger and well-controlled studies are warranted to examine the safety and efficacy of HB-DBS for treatment-refractory mood disorders in a more rigorous fashion

    Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Get PDF
    Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT), 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS) and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder). Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.Boryana S Stamova, Michelle Apperson, Wynn L Walker, Yingfang Tian, Huichun Xu, Peter Adamczy, Xinhua Zhan, Da-Zhi Liu, Bradley P Ander, Isaac H Liao, Jeffrey P Gregg, Renee J Turner, Glen Jickling, Lisa Lit and Frank R Shar

    Impact of Rare and Common Genetic Variants on Diabetes Diagnosis by Hemoglobin A1c in Multi-Ancestry Cohorts: The Trans-Omics for Precision Medicine Program

    Get PDF
    Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (−0.88% in hemizygous males, −0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; −0.98% in hemizygous males, −0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis

    Regional genome transcriptional response of adult mouse brain to hypoxia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since normal brain function depends upon continuous oxygen delivery and short periods of hypoxia can precondition the brain against subsequent ischemia, this study examined the effects of brief hypoxia on the whole genome transcriptional response in adult mouse brain.</p> <p>Result</p> <p>Pronounced changes of gene expression occurred after 3 hours of hypoxia (8% O<sub>2</sub>) and after 1 hour of re-oxygenation in all brain regions. The hypoxia-responsive genes were predominantly up-regulated in hindbrain and predominantly down-regulated in forebrain - possibly to support hindbrain survival functions at the expense of forebrain cognitive functions. The up-regulated genes had a significant role in cell survival and involved both shared and unshared signaling pathways among different brain regions. Up-regulation of transcriptional signaling including hypoxia inducible factor, insulin growth factor (IGF), the vitamin D3 receptor/retinoid X nuclear receptor, and glucocorticoid signaling was common to many brain regions. However, many of the hypoxia-regulated target genes were specific for one or a few brain regions. Cerebellum, for example, had 1241 transcripts regulated by hypoxia only in cerebellum but not in hippocampus; and, 642 (54%) had at least one hepatic nuclear receptor 4A (HNF4A) binding site and 381 had at least two HNF4A binding sites in their promoters. The data point to HNF4A as a major hypoxia-responsive transcription factor in cerebellum in addition to its known role in regulating erythropoietin transcription. The genes unique to hindbrain may play critical roles in survival during hypoxia.</p> <p>Conclusion</p> <p>Differences of forebrain and hindbrain hypoxia-responsive genes may relate to suppression of forebrain cognitive functions and activation of hindbrain survival functions, which may coordinately mediate the neuroprotection afforded by hypoxia preconditioning.</p
    • …
    corecore