1,985 research outputs found

    An Accurate Solution for Credit Value Adjustment (CVA) and Wrong Way Risk

    Get PDF
    This paper presents a new framework for credit value adjustment (CVA) that is a relatively new area of financial derivative modeling and trading. In contrast to previous studies, the model relies on the probability distribution of a default time/jump rather than the default time itself, as the default time is usually inaccessible. As such, the model can achieve a high order of accuracy with a relatively easy implementation. We find that the prices of risky contracts are normally determined via backward induction when their payoffs could be positive or negative. Moreover, the model can naturally capture wrong or right way risk.

    The Impact of Default Dependency and Collateralization on Asset Pricing and Credit Risk Modeling

    Get PDF
    This article presents a comprehensive framework for valuing financial instruments subject to credit risk and collateralization. In particular, we focus on the impact of default dependence on asset pricing, as correlated default risk is one of the most pervasive threats to financial markets. Some well-known risky valuation models in the markets can be viewed as special cases of this framework. We introduce the concept of comvariance (or comrelation) into the area of credit risk modeling to capture the default relationship among three or more parties. Accounting for default correlations and comrelations becomes important, especially during the credit crisis. Moreover, we find that collateralization works well for financial instruments subject to bilateral credit risk, but fails for ones subject to multilateral credit risk

    An efficient lattice algorithm for the libor market model

    Get PDF
    The LIBOR Market Model (LMM or BGM) has become one of the most popular models for pricing interest rate products. It is commonly believed that Monte-Carlo simulation is the only viable method available for the LIBOR Market Model. In this article, however, we propose a lattice approach to price interest rate products within the LIBOR Market Model by introducing a shifted forward measure and several novel fast drift approximation methods. This model should achieve the best performance without losing much accuracy. Moreover, the calibration is almost automatic and it is simple and easy to implement. Adding this model to the valuation toolkit is actually quite useful; especially for risk management or in the case there is a need for a quick turnaround.LIBOR Market Model, LMM, BGM, lattice model, tree model, shifted forward measure, drift approximation, risk management, calibration, callable exotics, callable bond, callable capped floater swap, callable inverse floater swap, callable range accrual swap

    An Accurate Solution for Credit Valuation Adjustment (CVA) and Wrong Way Risk

    Get PDF
    This paper presents a Least Square Monte Carlo approach for accurately calculating credit value adjustment (CVA). In contrast to previous studies, the model relies on the probability distribution of a default time/jump rather than the default time itself, as the default time is usually inaccessible. As such, the model can achieve a high order of accuracy with a relatively easy implementation. We find that the valuation of a defaultable derivative is normally determined via backward induction when their payoffs could be positive or negative. Moreover, the model can naturally capture wrong or right way risk

    An efficient lattice algorithm for the libor market model

    Get PDF
    The LIBOR Market Model has become one of the most popular models for pricing interest rate products. It is commonly believed that Monte-Carlo simulation is the only viable method available for the LIBOR Market Model. In this article, however, we propose a lattice approach to price interest rate products within the LIBOR Market Model by introducing a shifted forward measure and several novel fast drift approximation methods. This model should achieve the best performance without losing much accuracy. Moreover, the calibration is almost automatic and it is simple and easy to implement. Adding this model to the valuation toolkit is actually quite useful; especially for risk management or in the case there is a need for a quick turnaround

    A Simple and Precise Method for Pricing Convertible Bond with Credit Risk

    Get PDF
    This paper presents a new model for valuing hybrid defaultable financial instruments, such as, convertible bonds. In contrast to previous studies, the model relies on the probability distribution of a default jump rather than the default jump itself, as the default jump is usually inaccessible. As such, the model can back out the market prices of convertible bonds. A prevailing belief in the market is that convertible arbitrage is mainly due to convertible underpricing. Empirically, however, we do not find evidence supporting the underpricing hypothesis. Instead, we find that convertibles have relatively large positive gammas. As a typical convertible arbitrage strategy employs delta-neutral hedging, a large positive gamma can make the portfolio highly profitable, especially for a large movement in the underlying stock price

    Bilateral Defaultable Financial Derivatives Pricing and Credit Valuation Adjustment

    Get PDF
    The one-side defaultable financial derivatives valuation problems have been studied extensively, but the valuation of bilateral derivatives with asymmetric credit qualities is still lacking convincing mechanism. This paper presents an analytical model for valuing derivatives subject to default by both counterparties. The default-free interest rates are modeled by the Market Models, while the default time is modeled by the reduced-form model as the first jump of a time-inhomogeneous Poisson process. All quantities modeled are market-observable. The closed-form solution gives us a better understanding of the impact of the credit asymmetry on swap value, credit value adjustment, swap rate and swap spread

    A New Model for Pricing Collateralized OTC Derivatives

    Get PDF
    This paper presents a new model for pricing OTC derivatives subject to collateralization. It allows for collateral posting adhering to bankruptcy laws. As such, the model can back out the market price of a collateralized contract. This framework is very useful for valuing outstanding derivatives. Using a unique dataset, we find empirical evidence that credit risk alone is not overly important in determining credit-related spreads. Only accounting for both collateral arrangement and credit risk can sufficiently explain unsecured credit costs. This finding suggests that failure to properly account for collateralization may result in significant mispricing of derivatives. We also empirically gauge the impact of collateral agreements on risk measurements. Our findings indicate that there are important interactions between market and credit risk

    Is the Jump-Diffusion Model a Good Solution for Credit Risk Modeling? The Case of Convertible Bonds

    Get PDF
    This paper argues that the reduced-form jump diffusion model may not be appropriate for credit risk modeling. To correctly value hybrid defaultable financial instruments, e.g., convertible bonds, we present a new framework that relies on the probability distribution of a default jump rather than the default jump itself, as the default jump is usually inaccessible. As such, the model can back out the market prices of convertible bonds. A prevailing belief in the market is that convertible arbitrage is mainly due to convertible underpricing. Empirically, however, we do not find evidence supporting the underpricing hypothesis. Instead, we find that convertibles have relatively large positive gammas. As a typical convertible arbitrage strategy employs delta-neutral hedging, a large positive gamma can make the portfolio highly profitable, especially for a large movement in the underlying stock price
    corecore