
MPRA
Munich Personal RePEc Archive

An efficient lattice algorithm for the libor
market model

Tim, Xiao

Risk Analytics, Capital Markets Risk Management, CIBC,

Toronto, Canada

18. June 2011

Online at http://mpra.ub.uni-muenchen.de/32972/

MPRA Paper No. 32972, posted 25. August 2011 / 01:15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6538159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/32972/

AN EFFICIENT LATTICE ALGORITHM FOR THE

LIBOR MARKET MODEL

Tim Xiao1

Risk Analytics, Capital Markets Risk Management, CIBC, Toronto, Canada

ABSTRACT

The LIBOR Market Model has become one of the most popular models for

pricing interest rate products. It is commonly believed that Monte-Carlo simulation is

the only viable method available for the LIBOR Market Model. In this article,

however, we propose a lattice approach to price interest rate products within the

LIBOR Market Model by introducing a shifted forward measure and several novel fast

drift approximation methods. This model should achieve the best performance

without losing much accuracy. Moreover, the calibration is almost automatic and it is

simple and easy to implement. Adding this model to the valuation toolkit is actually

quite useful; especially for risk management or in the case there is a need for a

quick turnaround.

Key Words: LIBOR Market Model, lattice model, tree model, shifted forward

measure, drift approximation, risk management, calibration, callable exotics, callable

bond, callable capped floater swap, callable inverse floater swap, callable range

accrual swap.

1 The views expressed here are of the author alone and not necessarily of his host institution.

Address correspondence to Tim Xiao, Risk Analytics, Capital Markets Risk Management, CIBC,

161 Bay Street, 12th Floor, Toronto, ON M5J 2S8, Canada; email: Tim.Xiao@CIBC.com

 1

The LIBOR Market Model (LMM) is an interest rate model based on evolving

LIBOR market forward rates under a risk-neutral forward probability measure. In

contrast to models that evolve the instantaneous short rates (e.g., Hull-White, Black-

Karasinski models) or instantaneous forward rates (e.g., Heath-Jarrow-Morton (HJM)

model), which are not directly observable in the market, the objects modeled using

the LMM are market observable quantities. The explicit modeling of market forward

rates allows for a natural formula for interest rate option volatility that is consistent

with the market practice of using the formula of Black for caps. It is generally

considered to have more desirable theoretical calibration properties than short rate

or instantaneous forward rate models.

In general, it is believed that Monte Carlo simulation is the only viable

numerical method available for the LMM (see Piterbarg [2003]). The Monte Carlo

simulation is computationally expensive, slowly converging, and notoriously difficult

to use for calculating sensitivities and hedges. Another notable weakness is its

inability to determine how far the solution is from optimality in any given problem.

In this paper, we propose a lattice approach within the LMM. The model has

similar accuracy to the current pricing models in the market, but is much faster.

Some other merits of the model are that calibration is almost automatic and the

approach is less complex and easier to implement than other current approaches.

We introduce a shifted forward measure that uses a variable substitution to

shift the center of a forward rate distribution to zero. This ensures that the

distribution is symmetric and can be represented by a relatively small number of

discrete points. The shift transformation is the key to achieve high accuracy in

relatively few discrete finite nodes. In addition, we present several fast and novel

drift approximation approaches. Other concepts used in the model are probability

distribution structure exploitation, numerical integration and the long jump technique

(we only position nodes at times when decisions need to be made).

 2

This model is actually quite useful for risk management because normally full-

revaluations of an entire portfolio under hundreds of thousands of different future

scenarios are required for a short time window. Without an efficient algorithm, one

cannot properly capture and manage the risk exposed by the portfolio.

The rest of this paper is organized as follows: The LMM is discussed in Section

I. In Section II, the lattice model is elaborated. The calibration is presented in

Section III. The numerical implementation is detailed in Section IV, which will

enhance the reader’s understanding of the model and its practical implementation.

The conclusions are provided in Section V.

I. LIBOR MARKET MODEL

Let (, F , 0ttF ,P) be a filtered probability space satisfying the usual

conditions, where denotes a sample space, F denotes a -algebra, P denotes

a probability measure, and 0ttF denotes a filtration. Consider an increasing

maturity structure NTTT ...0 10 from which expiry-maturity pairs of dates

(1kT , kT) for a family of spanning forward rates are taken. For any time 1 kTt , we

define a right-continuous mapping function)(tn by)(1)(tntn TtT . The simply

compounded forward rate reset at t for forward period (1kT , kT) is defined by

 1
),(
),(1),;(:)(1

1
k

k

k
kkk TtP

TtPTTtFtF
 (1)

where),(TtP denotes the time t price of a zero-coupon bond maturing at time T and

),(: 1 kkk TT is the accrual factor or day count fraction for period (1kT , kT).

Inverting this relationship (1), we can express a zero coupon bond price in

terms of forward rates as:

k

tnj
jj

tnk tF
TtPTtP

)()()(1
1),(),(

 (2)

 3

LIBOR Market Model Dynamics

Consider a zero coupon bond numeraire),(iTP whose maturity coincides with

the maturity of the forward rate. The measure iQ associated with),(iTP is called iT

forward measure. Terminal measure NQ is a forward measure where the maturity of

the bond numeraire),(NTP matches the terminal date NT .

For brevity, we discuss the one-factor LMM only. The one-factor LMM (Brace

et al. [1997]) under forward measure iQ can be expressed as

If iTtki , , tkk
k

ij
jj

jjj
kkk dXtFtdt

tF
tFt

tFttdF)()(
)(1
)()(

)()()(1

 (3a)

If 1, kTtki , tkkk dXtFttdF)()()((3b)

If 1, kTtki , tkk

i

kj
jj

jjj
kkk dXtFtdt

tF
tFt

tFttdF)()(
)(1
)()(

)()()(
1

 (3c)

where tX is a Brownian motion.

There is no requirement for what kind of instantaneous volatility structure

should be chosen during the life of the caplet. All that is required is (see Hull-White

[2000]):

 1

0
2

1

2
1

2)(1),(:)(kT
k

k
kkk duu

T
T

 (4)

where k denotes the market Black caplet volatility and denotes the strike. Given

this equation, it is obviously not possible to uniquely pin down the instantaneous

volatility function. In fact, this specification allows an infinite number of choices.

People often assume that a forward rate has a piecewise constant instantaneous

volatility. Here we choose the forward rate)(tFk has constant instantaneous volatility

regardless of t (see Brigo-Mercurio [2006]).

 4

Shifted Forward Measure

The)(tFk is a Martingale or driftless under its own measure kQ . The solution

to equation (3b) can be expressed as

t

sk

t

kkk dXsdssFtF
00

2)()(
2
1exp)0()((5)

where),;0()0(1 kkk TTFF is the current (spot) forward rate. Under the volatility

assumption described above, equation (5) can be further expressed as

 tk

k
kk XtFtF

2

exp)0()(
2

 (6)

Alternatively, we can reach the same Martingale conclusion by directly deriving the

expectation of the forward rate (6); that is

)0(
2

exp
2
1)0(

2
)(

exp
2
1)0(

2
exp

2
exp

2
1)0()(

22

22

0

kt
t

kt
kt

k

t
t

tk
k

kk

FdY
t

Y
t

FdX
t
tX

t
F

dX
t

X
Xt

t
FtFE

 (7)

where tX , tY are both Brownian motions with a normal distribution (0, t) at time t,

)|(:)(tt EE F is the expectation conditional on the tF , and the variable substitution

used for derivation is

ktt tXY (8)

This variable substitution that ensures that the distribution is centered on zero and

symmetry is the key to achieve high accuracy when we express the LMM in discrete

finite form and use numerical integration to calculate the expectation. As a matter of

fact, without this linear transformation, a lattice method in the LMM either does not

exist or introduces too much error for longer maturities.

After applying this variable substitution (8), equation (6) can be expressed as

 5

 tk

k
ktk

k
kk YtFXtFtF

2

exp)0(
2

exp)0()(
22

 (9)

Since the LMM models the complete forward curve directly, it is essential to

bring everything under a common measure. The terminal measure is a good choice

for this purpose, although this is by no means the only choice. The forward rate

dynamic under terminal measure NQ is given by

tkk

N

kj
jj

jjj
kkk dXtFdt

tF
tF

tFtdF)(
)(1
)(

)()(
1

 (10)

The solution to equation (10) can be expressed as

 tk

k
kk

t

sk

t
k

kkk XttFdXdstFtF

2

)(exp)0(
2

)(exp)0()(
2

00

2

 (11a)

where the drift is given by

t N

kj jk
jj

jjt N

kj jkjk ds
sF

sF
dsst

0 10 1)(1
)(

)()(

 (11b)

where)(1/)()(sFsFs jjjjj is the drift term.

Applying (8) to (11a), we have the forward rate dynamic under the shifted

terminal measure as

 tk

k
kkk YttFtF

2
)(exp)0()(

2

 (12)

Drift Approximation

Under terminal measure, the drifts of forward rate dynamics are state-

dependent, which gives rise to sufficiently complicated non-lognormal distributions.

This means that an explicit analytic solution to the forward rate stochastic differential

equations cannot be obtained. Therefore, most work on the topic has focused on

 6

ways to approximate the drift, which is the fundamental trickiness in implementing

the Market Model.

Our model works backwards recursively from forward rate N down to forward

rate k. The N-th forward rate)(tFN without drift can be determined exactly. By the

time it takes to calculate the k-th forward rate)(tFk , all forward rates from)(1 tFk to

)(tFN at time t are already known. Therefore, the drift calculation (11b) is to

estimate the integrals containing forward rate dynamics)(sF j , for j=k+1,…,N, with

known beginning and end points given by)0(jF and)(tF j . For completeness, we list

all possible solutions below.

Frozen Drift (FD). Replace the random forward rates in the drift by their

deterministic initial values, i.e.,

N

kj jk
jj

jjt N

kj jk
jj

jj
k t

F
F

ds
sF

sF
t

10 1)0(1
)0(

)(1
)(

)(

 (13)

Arithmetic Average of the Forward Rates (AAFR). Apply the midpoint

rule (rectangle rule) to the random forward rates in the drift, i.e.,

N

kj jk
jjj

jjj
k t

tFF
tFF

t
1

2
1

2
1

)()0(1
)()0(

)(

 (14)

Arithmetic Average of the Drift Terms (AADT). Apply the midpoint rule to

the random drift terms, i.e.,

N

kj kj
jj

jj

jj

jj
k t

tF
tF

F
F

t
1)(1

)(
)0(1

)0(
2
1)(

 (15)

Geometric Average of the Forward Rates (GAFR). Replace the random

forward rates in the drift by their geometric averages, i.e.,

N

kj kj

jjj

jjj
k t

tFF

tFF
t

1)()0(1

)()0(
)(

 (16)

 7

Geometric Average of the Drift Terms (GADT). Replace the random drift

terms by their geometric averages, i.e.,

N

kj kj
jj

jj

jj

jj
k t

tF
tF

F
F

t
1)(1

)(
)0(1

)0(
)(

 (17)

Conditional Expectation of the Forward Rate (CEFR). In addition to the

two endpoints, we can further enhance our estimate based on the dynamics of the

forward rates. The forward rate)(sF j follows the dynamic (9) (The drift term is

ignored). We can derive the expectation of the forward rate conditional on the two

endpoints and replace the random forward rate in the drift by the conditional

expectation of the forward rate.

Proposition 1. Assume the forward rate)(sF j follows the dynamic (9), with

the two known endpoints given by)0(jF and)(tF j . Based on the conditional

expectation of the forward rate)(sF j , the drift of)(tFk can be expressed as

 N

kj

t
kj

tFFjj

tFFjj
k ds

sFE

sFE
t

jj

jj

1 0
)(),0(0

)(),0(0

]|)([1

]|)([
)(

 (18a)

where the conditional expectation of the forward rate is given by

t
sts

F
tF

FsFE j
t
s

j

j
jtFFj jj 2

)(
exp

)0(
)(

)0(]|)([
2

)(),0(0

 (18b)

 Proof. See Appendix A.

Conditional Expectation of the Drift Term (CEDT). Similarly, we can

calculate the conditional expectation of the drift term and replace the random drift

term by the conditional expectation.

Proposition 2. Assume the forward rate)(sF j follows the dynamic (9), with

the two known endpoints given by)0(jF and)(tF j . Based on the conditional

expectation of the drift term j , the drift of)(tFk can be expressed as

 8

N

kj kj

t

tFFjj

jj
k ds

sF
sF

Et
jj

1 0
)(),0(

0)(1
)(

)(

 (19a)

where the conditional expectation of the drift term is given by

)(

)(/)(1
1

)(1
)(

|)(
2

)(),0(

0)(),0(0 s
ss

sF
sF

EsE
Cj

CjCj

tFFjj

jj
tFFj

jj

jj

 (19b)

t
sts

F
tF

Fs j
t
s

j

j
jjCj 2

)(
exp

)0(
)(

)0(1)(
2

 (19c)

t
sts

t
sts

F
tF

Fs jj
t
s

j

j
jjCj

)(
exp1

)(
exp

)0(
)(

)0()(
22

2

22

 (19d)

 Proof. See Appendix A.

 The accuracy and performance of these drift approximation methods are

discussed in section IV.

II. THE LATTICE PROCEDURE IN THE LMM

The “lattice” is the generic term for any graph we build for the pricing of

financial products. Each lattice is a layered graph that attempts to transform a

continuous-time and continuous-space underlying process into a discrete-time and

discrete-space process, where the nodes at each level represent the possible values

of the underlying process in that period.

There are two primary types of lattices for pricing financial products: tree

lattices and grid lattices (or rectangular lattices or Markov chain lattices). The tree

lattices, e.g., traditional binomial tree, assume that the underlying process has two

possible outcomes at each stage. In contrast with the binomial tree lattice, the grid

lattices (see Amin [1993], Gandhi-Hunt [1997], Martzoukos-Trigeorgis [2002],

Hagan [2005], and Das [2011]) shown in Exhibit 1, which permit the underlying

 9

process to change by multiple states, are built in a rectangular finite difference grid

(not to be confused with finite difference numerical methods for solving partial

differential equations). The grid lattices are more realistic and convenient for the

implementation of a Markov chain solution.

This article presents a grid lattice model for the LMM. To illustrate the lattice

algorithm, we use a callable exotic as an example. Callable exotics are a class of

interest rate derivatives that have Bermudan style provisions that allow for early

exercise into various underlying interest rate products. In general, a callable exotic

can be decomposed into an underlying instrument and an embedded Bermudan

option.

We will simplify some of the definitions of the universe of instruments we will

be dealing with for brevity. Assume the payoff of a generic underlying instrument is

a stream of payments iiiii CTFZ)(1 for i=1,…,N, where iC is the structured

coupon. The callable exotic is a Bermudan style option to enter the underlying

instrument on any of a sequence of notification dates ex
M

exex ttt ,...,, 21 . For any

notification date ex
jtt , we define a right-continuous mapping function)(tn by

)(1)(tntn TtT . If the option is exercised at t, the reduced price of the underlying

instrument, from the structured coupon payer’s perspective, is given by

N

tni
Ni

iiii
t

N

tni
Ni

i
t

N TTP
CTFE

TTP
ZE

TtP
tItI

)(
1

)(),(
)(

),(),(
)(:)(

~
 (20)

where the ratio)(~ tI is usually called the reduced value of the underlying instrument

or the reduced exercise value or the reduced intrinsic value.

Lattice approaches are ideal for pricing early exercise products, given their

“backward-in-time” nature. Bermudan pricing is usually done by building a lattice to

carry out a dynamic programming calculation via backward induction and is

 10

standard. The lattice model described below also uses backward induction but

exploits the Gaussian structure to gain extra efficiencies.

First we need to create the lattice. The random process we are going to model

in the lattice is the LMM (12). Unlike traditional trees, we only position nodes at the

determination dates (the payment and exercise dates). At each determination date,

the continuous-time stochastic equation (12) shall be discretized into a discrete-time

scheme. Such discretized schemes basically convert the Brownian motion into

discrete variables. There is no restriction on discretization schemes. At any

determination date t, for instance, we discretize the Brownian motion to be equally

spaced as a grid of nodes tiy , , for i = 1,…, tS . The number of nodes tS and the space

between nodes titit yy ,1, at each determination date can vary depending on the

length of time and the accuracy requirement. The nodes should cover a certain

number of standard deviations of the Gaussian distribution to guarantee a certain

level of accuracy. We have the discrete form of the forward rate as

 tik

k
tikktik ytytFytF ,

2

,, 2
),(exp)0();(

 (21)

The zero-coupon bond (2) can be expressed in discrete form as

k

tnj
tijj

titntik ytF
yTtPyTtP

)(
,

,)(,);(1
1);,();,(

 (22)

We now have expressions for the forward rate (21) and discount bond (22),

conditional on being in the state tiy , at time t, and from these we can perform

valuation for the underlying instrument.

At the maturity date, the value of the underlying instrument is equal to the

payoff, i.e.,

)(),(,, NN TiNTiN yZyTI (23)

 11

The underlying state process tX in the LMM (11) is a Brownian motion. The

transition probability density from state (tix , , t) to state (Tjx , , T) is given by

)(2
)(

exp
)(2

1),;,(
2

,,
,, tT

xx

tT
Txtxp tiTj

Tjti

 (24)

Applying the variable substitution (8), equation (24) can be expressed as

)(2
)(

exp
)(2

1),;,(
2

,,
,, tT

tTyy

tT
Tytyp tTtiTj

Tjti

 (25)

Equation (20) can be further expressed as a conditional value on any state

(tiy , , t) as:

j

jj

j

j
T

N

tnj
j

tjTtiT

TNj

Tj

jtiN

ti dy
tT

tTyy
yTTP

yZ

tTyTtP
ytI

)(

2
,

,

,

)(2

)(
exp

);,(

)(

)(2
1

);,(
);(

 (26)

This is a convolution integral. Some fast integration algorithms, e.g., Cubic

Spline Integration, Fast Fourier Transform (FFT), etc., can be used for optimization.

We use the Trapezoidal Rule Integration in this paper for ease of illustration.

Incomplete information handling. Convolution is widely used in Electrical

Engineering, particularly in signal processing. The important part is that the far left

and far right parts of the output are based on incomplete information. Any models

that try to compute the transition values using integration will be inaccurate if this

problem is not solved, especially for longer maturities and multiple exercise dates.

Our solution is to extend the input nodes by padding the far end values on each side

and only take the original range of the output nodes.

Next, we determine the option values in each final notification node. On the

last exercise date, if we have not already exercised, the reduced option value in any

state Miy , is given by

 0,

);,(
);(

max
);,(

),(

,

,

,

,

MiN
ex
M

Mi
ex
M

MiN
ex
M

Mi
ex
M

yTtP
ytI

yTtP
ytV

 (27)

 12

Then, we conduct the backward induction process that is performed by

iteratively rolling back a series of long jumps from the final exercise date ex
Mt across

notification dates and exercise opportunities until we reach the valuation date.

Assume that in the previous rollback step ex
jt , we calculated the reduced option

value:);,(/),(,, jiN
ex
jji

ex
j yTtPytV . Now, we go to ex

jt 1 . The reduced option value at ex
jt 1 is

);,(
),(

,
);,(

),(
max

);,(
),(

1,1

1,1

1,1

1,1

1,1

1,1

jiN
ex
j

ji
ex
j

c

jiN
ex
j

ji
ex
j

jiN
ex
j

ji
ex
j

yTtP
ytV

yTtP
ytI

yTtP
ytV

 (28a)

where the reduced continuation value is given by

jex
j

ex
j

ex
jj

ex
jjjij

jN
ex
j

j
ex
j

ex
j

ex
jjiN

ex
j

ji
ex
j

c

dy
tt

ttyy
yTtP

ytV

ttyTtP
ytV

)(2
)(

exp
);,(

),(

)(2

1
);,(

),(

1

2
111,

11,1

1,1

 (28b)

We repeat the rollback procedure and eventually work our way through the

first exercise date. Then the present value of the Bermudan option is found by a final

integration given by

1

1

2
111

11

11

1
2

exp
);,(

),(
2

1),0()0(dy
t

ty
yTtP

ytV
t

TPpv ex

ex

N
ex

ex

exNBermudan

 (29)

The present value or the price of the callable exotic from the coupon payer’s

perspective is:

)0()0()0(_ instrumentunderlyBermudanpayer pvpvpv (30)

This framework can be used to price any interest rate products in the LMM

setting and can be easily extended to the Swap Market Model (SMM).

III. Calibration

First, if we choose the LMM as the central model, we need to price interest

rate derivatives that depend on either or both of cap and swaption markets. Second,

we will undoubtedly use various swaptions to hedge a callable exotic. It is a

 13

reasonable expectation that the calibrated model we intend to use to price our

exotic, will at least correctly price the market instruments that we intend to hedge

with. Therefore, in an exotic derivative pricing situation, recovery of both cap and

swaption markets might be desired.

The calibration of the LMM to caplet prices is quite straightforward. However,

it is very difficult, if not impossible, to perfectly recover both cap and swaption

markets. Fortunately for the LMM, there also exist extremely accurate approximate

formulas for swaptions implied volatility, e.g., Rebonato's formula.

We introduced a parameter and set ii
 where i denotes the market

Black caplet volatility. One can choose different for different i . For simplicity we

describe one situation here. By choosing 1 , we have perfectly calibrated the

LMM to the caplet prices in the market. However, our goal is to select a to

minimize the sum of the squared differences of the volatilities derived from the

market and the volatilities implied by our model for both caps and swaptions

combined.

In the optimization, we use Rebonato’s formula for an efficient expression of

the model swaption volatilities, given by

 2Re
,

2
1, 2

,

2

1, 02
,

2
,

)0(
)0()0()0()0(

)()(
)0(

)0()0()0()0(1

bonato
ji

jjjiji

ji

T

ji
ijjijiLMM

S
FFww

dttt
S

FFww
T

 (31a)

where ij =1 under one-factor LMM. The swap rate)0(,S is given by

 1,)0()0()0(
i ii FwS (31b)

1 1
1

1
1

)0(1

)0(1
)0(

k

k

j jjk

j jji
i

F

F
w (31c)

 14

Assume the calibration containing caplets and G swaptions. The error

minimization is given by

 G
j

swn
Nj

bonato
Nj

M
i ii 1

2
,

Re
,1

2min
 (32)

where swn
Nj , denotes the market Black swaption volatility. The optimization can be

found at a stationary point where the first derivative is zero; that is,

 G

j
bonato

Nj
M
i i

G
j

swn
Nj

M
i i

1
Re

,1

1 ,1

 (33)

In terms of forward volatilities, we use the time-homogeneity assumption of

the volatility structure, where a forward volatility for an option is the same or close

to the spot volatility of the option with the same time to expiry. The time-

homogeneous volatility structure can avoid non-stationary behavior.

In the LMM, forward swap rates are generally not lognormal. Such deviation

from the lognormal paradigm however turns out to be extremely small. Rebonato

[1999] shows that the pricing errors of swaptions caused by the lognormal

approximation are well within the market bid/ask spread. For most short maturity

interest rate products, we can use the lattice model without calibration (33).

However, for longer maturity or deeply in the money (ITM) or out of the money

(OTM) exotics we may need to use the calibration and even some specific skew/smile

adjustment techniques to achieve high accuracy.

IV. NUMERICAL IMPLEMENTATION

In this section, we will elaborate on more details of the implementation. We

will start with a simple callable bond for the purpose of an easy illustration and then

move on to some typical callable exotics, e.g., callable capped floater swap and

 15

callable range accrual swap. The reader should be able to implement and replicate

the model after reading this section.

Callable Bond

A callable bond is a bond with an option that allows the issuer to retain the

privilege of redeeming the bond at some points before the bond reaches the maturity

date. For ease of illustration, we choose a very simple callable bond with a one-year

maturity, a quarterly payment frequency, a $100 principal amount (A), and a 4%

annual coupon rate (the quarterly coupon 1C). The call dates are 6 months, 9

months, and 12 months. The call price (H) is 100% of the principal. The bond spread

() is 0.002. Let the valuation date be 0. A detailed description of the callable bond

and current (spot) market data is shown in Exhibit 2.

For a short-term maturity callable bond, our lattice model can reach high

accuracy even without calibration (33) and incomplete information handling.

Therefore, we set 1 and ii . The valuation procedure for a callable bond

consists of 4 steps:

Step 1: Create the lattice. Based on the long jump technique, we position

nodes only at the determination (payment/exercise) dates. The number of nodes and

the space between nodes at each determination date may vary depending on the

length of time and the accuracy requirement. To simplify the illustration, we choose

the same settings across the lattice, with a grid space (space between nodes)

2/1 , and a number of nodes S=7. It covers 3)1(S standard deviations for a

standard normal distribution. The nodes are equally spaced and symmetric, as shown

in Exhibit 3.

Step 2: Find the option value at each final node. At the final maturity date

4T , the payoff of the callable bond in any state iy is given by

 16

 CAHyTVV ii ,min),(: 44, (34)

where A denotes the principal amount, C denotes the bond coupon, and H denotes

the call price. The option values at the maturity are equal to the payoffs as shown in

Exhibit 3.

Step 3: Find the option value at earlier nodes. Let us go to the penultimate

notification date 3T . The option value in any state iy is given by

 CVHyTVV c
iii 3,33, ,min),(: (35)

Equation (35) can be further expressed in the form of reduced value as

);,(
,

);,(
min

);,(
:~

43

3,

4343

3,
3,

i

c
i

ii

i
i yTTP

CV
yTTP

H
yTTP

V
V (36a)

where);,(/ 433, i
C

i yTTPV denotes the reduced continuation value in state iy at 3T given

by

34

2
33441

14

7
2

34

2
3344

4
34

34

34

2
3344

4
34

34

43

3,

2
)(

exp),(

2
)(

exp),(
22

)(exp

2
)(

exp),(
2

)(exp
);,(

TT
TTyy

yTV

TT
TTyy

yTV
TT

TT

dY
TT

TTyY
YTV

TT
TT

yTTP
V

ij
j

j
ij

j

i

i

c
i

 (36b)

where denotes the bond spread. Similarly we can compute the reduced callable

bond values at 2T . All intermediate reduced values are shown in Exhibit 3.

Step 4: Compute the final integration. The final integral at valuation date 0 is

calculated as

 17

399.80
2

)(
exp

);,(
),(

2
)(

exp
);,(

),(
22

exp),0(

2
)(

exp
);,(

),(
2

exp
),0()0(

2

2
221

142

12

7

2
2

2
22

42

2

2

2
4

2

2
22

42

2

2

2
4

T
Ty

yTTP
yTV

T
Ty

yTTP
yTV

T
TTP

dY
T

TY
YTTP

YTV
T
TTPV

j

j

j

j

j

j

j

(37)

Moreover, we need to add the present value of the coupon at 1T into the final

price. The final callable bond value is given by

398.81),0()exp()0()0(11 CTPTVV (38)

The pseudo-code is supplied in Appendix B for the implementation program.

The convergence results shown in Exhibit 4 indicate what occurs for a given grid

space when we increase the number of nodes S. The speed of convergence is very

fast, ensuring that a small number of grids are sufficient. All calculations are

converged to 100.7518. One sanity check is that the callable bond price should be

close to the straight bond price if the call prices become very high. Both of them are

computed as 103.3536.

Callable capped floater swap

A callable capped floater swap has two legs: a regular floating leg and a

structured coupon leg. The structured coupon rate of the j-th period (jj TT ,1) is given

by

}],),(max{min[1
F
j

C
jjjjjjjj KKTFAC (39)

where jA is the notional amount, C
jK is the rate cap, F

jK is the rate floor, j is the

spread and j is the scale factor. For j > 0, it is called a callable capped floater

swap. For j < 0, it is called a callable inverse floater swap.

 18

We choose a real middle life trade with more than 10 years remaining in its

lifetime. The floating leg has a quarterly payment frequency with step-down

notionals and step-up spreads. The structured coupon leg has a semi-annually

payment frequency with varying notionals, spreads, scales, rate caps, and rate

floors. The call schedule is semi-annual.

Callable range accrual swap

A callable range accrual swap has two legs: a regular floating leg and a

structured coupon leg. The structured coupon rate of the j-th period (jj TT ,1) is given

by

 j

ji

T
Tt

j

ijj
j M

RIA
C 11

 (40a)

where

otherwise

KtttFKif
I jiiij

i 0
),;(1 maxmin

 (40b)

where R is the fixed rate, minjK and maxjK are the accrual range of the j-th period,

),;(iii tttF is the LIBOR rate, is the range accrual index term, jM is the total

number of the business days in the j-th period.

 We choose a real 10 years maturity trade. The floating leg has a quarterly

payment frequency and the structured coupon leg has a semi-annually payment

frequency with varying accrual ranges. It starts with the first call opportunity being

in 3 years from inception, and then every year until the last possibility being 9 years

from inception. The range accrual index term is 6 months.

The lattice implementation procedure for a callable capped floater swap or a

callable range accrual swap is quite similar to the one for a callable bond except the

valuation for the underlying instrument.

 19

The convergence diagrams of pricing calculations are shown in Exhibits 5 and

6. Each curve in the diagrams represents the convergence behavior for a given grid

space as nodes are increased. All of the lattice results are well converged. If the grid

space is smaller, the algorithm has better convergence accuracy but a slower

convergence rate, and vice verse.

We benchmarked our model under different drift approximation methods with

several standard market approaches, e.g., the regression-based Monte Carlo in the

full LMM and the HJM trinomial tree. The model comparisons for the accuracy and

speed are shown in Exhibits 7 and 8. With regards to accuracy, as expected, the FD

performs very badly. AAFR and GAFR do a little better but errors go in different

directions. The same conclusions can be drawn for AADT and GADT. Both CEFR and

CEDT are the best. In terms of CPU times, FD, AAFR, AADT, GAFR and GADT are the

same. But CEFR and CEDT are slower, especially in the callable range accrual swap

case.

V. CONCLUSION

In this paper, we proposed a lattice model in the LMM to price interest rate

products. Conclusions can be drawn, supported by the previous sections. First, the

model is quite stable. The fast convergence behavior requires fewer discretization

nodes. Second, this model has almost equivalent accuracy to the current pricing

models in the market. Third, the implementation of the model is relatively easy. The

calibration is very simple and straightforward. Finally, the performance of the model

is probably the best among all known approaches at the time of writing.

We use the following techniques in our model: shifted forward measure, drift

approximation, probability distribution structure exploitation, long jump, numerical

integration, incomplete information handling, and calibration. Combining these

 20

techniques, the model achieves sufficient accuracy in relatively few time steps and

discrete nodes, which makes it a very efficient method.

For ease of illustration, we present the lattice model based on the Trapezoidal

Rule integration. A better but slightly more complicated solution is to spline the

payoff functions. The cubic spline of the option payoffs can achieve higher accuracy,

especially for Greeks calculations, and higher speed. Although cubic spline takes

some time, the lattice will require much fewer nodes (23 ~ 28 nodes are good

enough) and can perform a much faster integration. In general, the spline method

can provide a speedup factor around 3 ~ 5 times.

We have implemented the lattice model to price a variety of interest rate

exotics. The algorithm can always achieve a fast convergence rate. The accuracy,

however, is a bit trickier, depending on many factors: drift approximation

approaches, numerical integration schemes, volatility selections, and calibration, etc.

Some work, such as calibration, is more of an art than a science.

REFERENCE

Amin, K. “Jump diffusion option valuation in discrete time.” Journal of Finance, Vol.

48, No. 5 (1993), pp. 1833-1863.

Brace, A., D. Gatarek, and M. Musiela. “The market model of interest rate dynamics.”

Mathematical Finance, Vol. 7, No. 4 (1997), pp. 127-155.

Brigo, D., and F. Mercurio. “Interest Rate Models – Theory and Practice with Smiles,

Inflation and Credit.” Second Edition, Springer Finance, 2006.

 21

Das, S. “Random lattices for option pricing problems in finance.” Journal of

Investment Management, Vol. 9, No.2 (2011), pp. 134-152.

Gandhi, S. and P. Hunt. “Numerical option pricing using conditioned diffusions,”

Mathematics of Derivative Securities, Cambridge University Press, Cambridge, 1997.

Hagan, P. “Accrual swaps and range notes.” Bloomberg Technical Report, 2005.

Hull. J., and A. White. “Forward rate volatilities, swap rate volatilities and the

implementation of the Libor Market Model.” Journal of Fixed Income, Vol. 10, No. 2

(2000), 46-62.

Martzoukos, H., and L. Trigeorgis. “Real (investment) options with multiple sources

of rare events.” European Journal of Operational Research, 136 (2002), 696-706.

Piterbarg, V. “A Practitioner’s guide to pricing and hedging callable LIBOR exotics in

LIBOR Market Models.” SSRN Working paper, 2003.

Rebonato, R. “Calibrating the BGM model.” RISK, March (1999), 74-79.

APPENDIX A:

Proof of Proposition 1. We rewrite (9) as

2)0(
)(

ln
1

)(
2t

F
tF

tY j

j

j

j

 (A1)

In the general Brownian Bridge case when the Wiener process)(tY has)(1tY =a and

)(2tY =b, the distribution of)(tY at time),(21 ttt is normal given by

 22

)(

))(()(,
)(

))(()(~)(
12

21

12

1

tt
ttttt

tt
abttatNtY YY (A2)

In our case: 01 t , tt 2 , a=0, b=)(tY ,),0(ts , thus (A2) can be expressed as

t

stsstY
t
ssNsY YY

)()(),()(~)((A3)

Let 2/)()(2ssYsA jjj . According to the linear transformation rule,)(sA j is

a normal given by

t
sts

ss
F

tF
t
ss

sssA j
YjAj

j

jj
YjAjj

)(
)()(,

)0(
)(

ln
2

)()(~)(
2

2
2

 (A4)

Let)(exp)(sAsB jj . By definition,)(sB j is a lognormal given by

)(),(~)(ssLogNsB AjAjj . According to the characterizations of the lognormal

distribution, the mean and variance of)(sB j are

t
sts

F
tFs

sBEs j
t
s

j

jAj
AjjBj 2

)(
exp

)0(
)(

2
)(

exp)()(
2

0

 (A5a)

t
sts

F
tF

t
sts

ssss j
t
s

j

jj
AjAjAjBj

)(
exp

)0(
)(

1
)(

exp)()(2exp1)(exp)(
2

2
2

(A5b)

We have the conditional expectation of the forward rate)(sF j as

t
sts

F
tF

FsBEFsFE j
t
s

j

j
jjjtFFj jj 2

)(
exp

)0(
)(

)0()()0(|)(
2

0)(),0(

 (A6)

 Proof of Proposition 2. Let)()0(1)(1)(sBFsFsC jjjjjj where)(sBj is

defined above. According to the linear transformation rule,)(sC j is a lognormal

given by)(),(~)(svsLogNsC j
 . The mean and variance of)(sC j are

 23

t
sts

F
tF

FsFs j
t
s

j

j
jjBjjjCj 2

)(
exp

)0(
)(

)0(1)()0(1)(
2

 (A7a)

t
sts

F
tF

t
sts

FsFs j
t
s

j

jj
jjBjjjCj

)(
exp

)0(
)(

1
)(

exp)0()()0()(
2

2
2

2222
 (A7b)

On the other hand, according to the characterizations of the lognormal

distribution, the mean and variance of)(sC j are

2
)()(exp)(sssCj

 (A8a)

)()(2exp1)(exp)(ssssCj

 (A8b)

Solving the equation (A8a) and (A8b), we get

)(/)(1

)(
ln)(

2 ss

s
s

CjCj

Cj

 (A9a)

)(
)(

1ln)(2 s
s

s
Cj

Cj

 (A9b)

We know the first negative moment of the lognormal is 2/)()(exp)(1 sssCE j

and have the conditional expectation of the drift term as

)(
)(/)(1

1
2

)()(exp1

)(
11

)(1
11

)(1
)(

2

00

)(),0(

0

s
ssss

sC
E

sF
E

sF
sF

E

Cj

CjCj

jjjtFFjj

jj

jj

 (A10)

where)(sCj ,)(sCj are given by (A7a) and (A7b).

APPENDIX B:

 24

The following pseudo-code (C++) demonstrates how to implement the model

to price a callable bond. For the purpose of an easy illustration, we choose the same

settings (the number of nodes and the grid space) across the lattice and use the

Trapezoidal Rule for numerical integration.

// 2*numNodes = 2*mNumNodes = the number of nodes (S); gap = mGap = the grid space (Phi)
double priceCallableBond (BondTrade* bd, CallableBond* cb, int numNodes, double gap) {
 double pv;
 cb->fillLattice();

 // The last exercise
 CallSchedule& cs = bd->callSch[numCallSch-1];
 if (cs.term == bd->cFlow[numCashFlow-1].endDate) // The last exercise is at maturity
 for (int i= -numNodes; i <= numNodes; i++)
 cs.reducedValue[i+numNodes] = min (cs.callPrice,

 bd->cFlow[numCashFlow-1].reducedPayoff[i+numNodes]);
 else { // The last exercise is before maturity
 for (int i= -numNodes; i <= numNodes; i++) {
 pv = 0;
 for (int j = bd->numCF-1; (bd->cFlow[j].endDate >= cs.term) && (j >= 0); j--) {
 CashFlow& cf = bd->cFlow[j];
 (cf.endDate == cs.term) ? pv += cf.reducedPayoff[i+numNodes]

 : pv += exp(-bondSpread*(cf.endDate-cs.term)) * cb->integral(i,
 cs.vol, cf.vol, cf.endDate, cs.term, cf.reducedPayoff);

 }
 cs.reducedValue[i+numNodes] = min (cs.callPrice/cs.df[i+numNodes], pv);
 }
 }

 if (numCallSch > 1) { // The remaining exercises
 for (int i = numCallSch - 2; i>=0; i--) {
 CallSchedule& cs = bd->callSch[i];
 CallSchedule& preCs = bd->callSch[i+1];
 for (int j = -numNodes; j <= numNodes; j++) {
 pv = exp(-bondSpread * (preCs.term - cs.term))
 * cb->integral (j, cs.vol, preCs.vol, preCs.term, cs.term, preCs.reducedValue);
 for (int k=bd->numCF-1; k >= 0; k--) // Count intermediate coupons
 if ((bd->cFlow[k].endDate < preCs.term) && (bd->cFlow[k].endDate >= cs.term))
 pv += bd->cFlow[k].reducedPayoff[j+numNodes]
 * exp (-bondSpread*(bd->cFlow[k].endDate - cs.term));
 cs.reducedValue[j+numNodes] = min (cs.callPrice/cs.df[j+numNodes], pv);
 }
 }
 }

 // The final integral
 CallSchedule& preCs = bd->callSch[0];
 pv = cb->integral (0, 0, preCs.vol, preCs.term, 0, preCs.reducedValue) *exp(-bondSpread*(preCs.term));
 pv *= bd->cFlow[bd->numCF-1].endDf; // endDf: discount factor from 0 to the end date
 for (int k=bd->numCF-1; k >= 0; k--) // Count intermediate coupons
 if ((bd->cFlow[k].endDate < preCs.term))
 pv += bd->cFlow[k].coupon * bd->cFlow[k].endDf * exp(-bondSpread * bd->cFlow[k].endDate);
 return pv;
}

 25

void CallableBond::fillLattice() {
 for (int i = mTrade->numCF-1; i>=0; i--) {
 CashFlow& cf = mTrade->cFlow[i];
 if (cf.endDate < mTrade->callSch[0].term) break;
 for (int j = -mNumNodes; j <= mNumNodes; j++)
 fillNode(i, j, cf.startDate, mDrift);
 }
}

void CallableBond::fillNode(int cI, int nI, double vT, DriftAppx flag) {
 int numCF = mTrade->numCF;
 double avgF, expon, fwdt, drift = 0;
 CashFlow& fl = mTrade->cFlow[cI];
 if (cI == numCF-1) { // At maturity
 fl.df[nI + mNumNodes] = 1.0;
 fl.reducedPayoff[nI + mNumNodes] = fl.notional + fl.coupon;
 }
 else if (fl.startDate <= 0) // Starting before valuation date)
 fl.reducedPayoff[nI + mNumNodes] = fl.coupon * fl.endDf / mTrade->cFlow[numCF-1].endDf;
 else {
 fl.df[nI + mNumNodes] = 1.0;
 for (int i = numCF - 1; i > cI; i--) {
 CashFlow& cf = mTrade->cFlow[i];
 expon = (cf.vol * cf.vol * vT / 2) + cf.vol * nI * mGap;
 fwdt = cf.fwd0 * exp(-drift + expon);
 switch (flag) { // The other cases are similar to either AAFR or CEFR
 case AAFR: // Arithemic Average Fwd Rate
 avgF = 0.5 * (cf.fwd0 + fwdt);
 drift += vT * fl.vol * cf.vol * cf.delta * avgF / (1 + cf.delta * avgF);
 break;
 case CEFR: // Conditional Expectation of Fwd Rate
 drift += fl.vol * cf.vol * integralFwd(cf.fwd0, fwdt, 0, vT, cf.vol, cf.delta);
 break;
 default:
 break;
 }
 fl.df[nI + mNumNodes] /= (1 + fwdt * cf.delta); // df: discount factor maturing at maturity
 }
 fl.reducedPayoff[nI + mNumNodes] = fl.coupon / fl.df[nI + mNumNodes];
 }
}

// Gauss-Legendre integration for drift
const double xArray[] = {0, 0.1488743389, 0.4333953941, 0.6794095682, 0.8650633666, 0.9739065285};
const double wArray[] = {0, 0.2955242247, 0.2692667193, 0.2190863625, 0.1494513491, 0.0666713443};
double CallableBond::integralFwd(double F0, double Ft, double a, double b, double vol, double delta) {
 double xm = 0.5 * (b + a);
 double xr = 0.5 * (b - a);
 double ss = 0, dx = 0;
 for (int j = 1; j <= 5; j++) {
 dx = xr * xArray[j];
 ss += wArray[j] * (expectFwd(F0, Ft, (xm + dx), b, vol, delta)

 + expectFwd(F0, Ft, (xm - dx), b, vol, delta));
 }
 return ss * xr;
}

double CallableBond::expectFwd(double F0, double Ft, double s, double t, double vol, double delta) {
 double mean = F0 * pow ((Ft / F0), (s / t)) * exp(0.5 * vol * vol * s * (t - s) / t);
 return delta * mean / (1 + delta * mean);-
}

 26

// Trapezoidal Rule Integration
double CallableBond::integral (int curPos, double curVol, double preVol, double preTerm,

 double curTerm, double* value){
 double diffPos, tmpV, sum = 0;
 for (int k = -mNumNodes; k <= mNumNodes; k++) {
 diffPos = k*mGap - curPos*mGap + preVol * preTerm - curVol * curTerm;
 tmpV = value[k+mNumNodes] * exp (-diffPos * diffPos/(2*(preTerm - curTerm)));
 ((k == -mNumNodes) || (k == mNumNodes)) ? sum += 0.5 * tmpV : sum += tmpV;
 }
 return sum * mGap / sqrt(2 * PI * (preTerm - curTerm));
}

EXHIBIT 1. The Grid/Rectangular Lattice

This exhibit defines the state space for the underlying process tY over the first two discrete

time periods. The starting state 0y at valuation date 0 is the single root of the lattice. At each

date it the underlying process
it

Y is discretized into a number of vertical nodes/states indexed

by j. The value
itjy , denotes the underlying process in state j at date it . The node

1,1 ty , for

instance, can evolve to any discrete state in 2t with certain transition probabilities. For a

Brownian motion, the transition probability can be easily determined by (25).

EXHIBIT 2: The Callable Bond and Associated Spot Market Data

The callable bond has a one-year maturity, a $100 principal, a quarterly payment frequency,

and a 4% annual coupon rate. Delta = (end date – start date)/365 (day count: ACT/365). The

discount bond),0(iTP matures at the end date iT . The call dates are 6, 9, and 12 months.

Cash flow index 1 2 3 4
Start date (days) 0 92 181 273

1t

1,2 ty

1,3 ty

1,4 ty

1,5 ty

2,1 ty

2,2 ty

2,3 ty

2,4 ty

2,5 ty

0y

1,1 ty

2t

 27

End date (days) 92 (1T) 181 (2T) 273 (3T) 365 (4T)
Delta (years) 0.252055 0.243836 0.252055 0.252055

Payoff ($) 1 1 1 101
Call Schedule (days) - 181 273 365
Discount bond),0(iTP 0.999313 0.998557 0.997293 0.995667

Black Volatility i - 0.337631 0.344218 0.350878

EXHIBIT 3: The LMM Lattice Structure of the Callable Bond.

The callable bond is defined in Exhibit 2.),(~:~
, ijji yTVV denotes the reduced value of the

callable bond at any node (i, j). 1V denotes the coupon at 1T .)0(V is the value calculated by

the final integration.)0(V is the final callable bond value that is equal to)0(V plus the present

value of 1V . The grid space is 5.0 and the number of nodes is 7S . This lattice has 3

steps and 7 nodes.

EXHIBIT 4: The Convergence Results for the Callable Bond.

The callable bond is defined in Exhibit 2. 1 and drift approximation is AADT. Each curve

represents the convergence behavior for a given grid space (phi) as nodes are added. All

calculations are converged to 100.7518.

0)6(2 mT)12(4 mT)9(3 mT

5.114,13,12,1 yyyy

124,23,22,2 yyyy

)3(1 mT

07.29~
2,1 V

99.66~
2,2 V

398.81)0(V

5.034,33,32,3 yyyy

044,43,42,4 yyyy

5.054,53,52,5 yyyy

1004,1 V

1004,2 V

1004,3 V

1004,4 V

1004,5 V

24.44~
3,1 V

05.78~
3,2 V

24.96
~

3,3 V

17.100~
3,4 V

82.98~
3,5 V

41.86~
2,3 V

72.96~
2,4 V

55.94~
2,5 V

7
5.0

S

11 V399.80)0(V

1004,6 V

1004,7 V

164,63,62,6 yyyy

5.174,73,72,7 yyyy

11.87~
3,6 V

72.57~
3,7 V

36.77~
2,6 V

46.45~
2,7 V

 28

Convergence of a callable bond

70

80

90

100

110

11 15 19 23 27 31 35 39 43 47

Number of nodes N

Pr
ic

es
phi=1/2

phi=1/3

phi=1/4

.

EXHIBIT 5: The Convergence Results for the Callable Capped Floater Swap

The callable capped floater swap has more than 10 years remaining in its lifetime. The floating

leg has a quarterly payment frequency. The structural leg has a semi-annually payment

frequency. The call schedule is semi-annual. =1 and drift approximation is CEDT. Each curve

represents the convergence behavior for a given grid space (phi) as nodes (N) are added.

Convergence of a callable capped floater swap

-9.0%

-8.0%

-7.0%

-6.0%

-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Number of nodes N

R
el

at
iv

e
pr

ic
e

er
ro

r

phi=1/4

phi=1/6

phi=1/8

phi=1/10

EXHIBIT 6: The Convergence Results for the Callable Range Accrual Swap

 29

The callable range accrual swap has 10 years maturity. The floating leg has a quarterly

payment frequency. The structural leg has a semi-annually payment frequency. There are 7

call opportunities. =1 and drift approximation is CEDT. Each curve represents the

convergence behavior for a given grid space (phi) as nodes are added.

 Convergence of a callable range accrual swap

-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Number of nodes N

R
el

at
iv

e
pr

ic
e

er
ro

rs

phi=1/4
phi=1/6
phi=1/8
phi=1/10

EXHIBIT 7: The Benchmark Results for the Callable Capped Floater Swap

This exhibit presents the results for model comparison. We benchmark the lattice model under

different drift approximation methods with several standard market approaches, e.g., the

regression-based Monte Carlo in the full LMM and the HJM trinomial tree, for both accuracy

and speed. The trade is the same as the one in Exhibit 5. The grid space is =1/8 and the

number of nodes is S=200. PC denotes Predictor-Corrector. The column ‘Dif from MC’ = 1 –

(current row price) / (price of MC in LMM). All computational times are denoted in seconds on

a computer with a 2.33 GHz Duo Core CPU.

Model Drift Steps n Calls Nodes/Paths Price Err from MC Run time
MC in LMM - PC 40 20 1 million 4,546,863.3 0 290.32
HJM tri-tree - - 1979 20 2n+1 4,602,136.3 1.22% 15.01

1 FD 40 20 200 4,822,728.4 6.07% 0.32
1 AAFR 40 20 200 4,637,263.2 1.99% 0.32
1 AADT 40 20 200 4,637,718.1 2.00% 0.32
1 GAFR 40 20 200 4,698,215.6 3.33% 0.32
1 GADT 40 20 200 4,698,441.3 3.33% 0.32

Our Model

1 CEFR 40 20 200 4,665,210.3 2.60% 0.38

 30

1 CEDT 40 20 200 4,665,552.4 2.61% 0.39
0.99 FD 40 20 200 4,708,768.9 3.56% 0.32
0.99 AAFR 40 20 200 4,504,989.2 -0.92% 0.32
0.99 AADT 40 20 200 4,505,426.3 -0.91% 0.32
0.99 GAFR 40 20 200 4,609,779.5 1.38% 0.32
0.99 GADT 40 20 200 4,609,996.6 1.39% 0.32
0.99 CEFR 40 20 200 4,563,689.2 0.37% 0.38
0.99 CEDT 40 20 200 4,563,730.9 0.37% 0.39

EXHIBIT 8: The Benchmark Results for the Callable Range Accrual Swap

This exhibit presents the results for model comparison. We benchmark the lattice model under

different drift approximation methods with several standard market approaches, e.g., the

regression-based Monte Carlo in the full LMM and the HJM trinomial tree, for both accuracy

and speed. The trade is the same as the one in Exhibit 6. The grid space is =1/8 and the

number of nodes is S=200. The column ‘Dif from MC’ = 1 – (current row price) / (price of MC

in LMM). All computational times are denoted in seconds on a computer with a 2.33 GHz Duo

Core CPU.

Model Drift Steps n Calls Nodes/Paths Price Dif from MC Run time
MC in LMM - Euler 1801 7 1 million 585793.2 0.00% 2372.21
HJM tri-tree - - 1801 7 2n+1 582167.8 -0.62% 15.62

1 FD 1801 7 200 648365.4 10.68% 0.21
1 AAFR 1801 7 200 602482.2 2.85% 0.21
1 AADT 1801 7 200 602742.1 2.89% 0.21
1 GAFR 1801 7 200 616318.6 5.21% 0.21
1 GADT 1801 7 200 616425.3 5.23% 0.21
1 CEFR 1801 7 200 598253.3 2.13% 2.21
1 CEDT 1801 7 200 598372.4 2.15% 2.35

0.99 FD 1801 7 200 609373.9 4.03% 0.21
0.99 AAFR 1801 7 200 579337.2 -1.10% 0.21
0.99 AADT 1801 7 200 579386.3 -1.09% 0.21
0.99 GAFR 1801 7 200 591981.5 1.06% 0.21
0.99 GADT 1801 7 200 591917.6 1.05% 0.21
0.99 CEFR 1801 7 200 588918.9 0.53% 2.21

Our Model

0.99 CEDT 1801 7 200 588935.7 0.54% 2.35

