845 research outputs found

    Development of 〈110〉 texture in copper thin films

    Get PDF
    Author name used in this publication: C. H. Woo2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Kinetics-limited surface structures at the nanoscale

    Get PDF
    Author name used in this publication: C. H. Woo2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Copper thin film of alternating textures

    Get PDF
    Author name used in this publication: C. H. Woo2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Engineering kinetic barriers in copper metallization

    Get PDF
    Author name used in this publication: C. H. Woo2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    New Method to Prepare Mitomycin C Loaded PLA-Nanoparticles with High Drug Entrapment Efficiency

    Get PDF
    The classical utilized double emulsion solvent diffusion technique for encapsulating water soluble Mitomycin C (MMC) in PLA nanoparticles suffers from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. In this paper, MMC loaded PLA nanoparticles were prepared by a new single emulsion solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of MMC by formation of MMC–SPC complex. Four main influential factors based on the results of a single-factor test, namely, PLA molecular weight, ratio of PLA to SPC (wt/wt) and MMC to SPC (wt/wt), volume ratio of oil phase to water phase, were evaluated using an orthogonal design with respect to drug entrapment efficiency. The drug release study was performed in pH 7.2 PBS at 37 °C with drug analysis using UV/vis spectrometer at 365 nm. MMC–PLA particles prepared by classical method were used as comparison. The formulated MMC–SPC–PLA nanoparticles under optimized condition are found to be relatively uniform in size (594 nm) with up to 94.8% of drug entrapment efficiency compared to 6.44 μm of PLA–MMC microparticles with 34.5% of drug entrapment efficiency. The release of MMC shows biphasic with an initial burst effect, followed by a cumulated drug release over 30 days is 50.17% for PLA–MMC–SPC nanoparticles, and 74.1% for PLA–MMC particles. The IR analysis of MMC–SPC complex shows that their high liposolubility may be attributed to some weak physical interaction between MMC and SPC during the formation of the complex. It is concluded that the new method is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and longer sustained drug release in comparison to classical method

    Controllable Synthesis of Magnesium Oxysulfate Nanowires with Different Morphologies

    Get PDF
    One-dimensional magnesium oxysulfate 5Mg(OH)2 · MgSO4 · 3H2O (abbreviated as 513MOS) with high aspect ratio has attracted much attention because of its distinctive properties from those of the conventional bulk materials. 513MOS nanowires with different morphologies were formed by varying the mixing ways of MgSO4 · 7H2O and NH4OH solutions at room temperature followed by hydrothermal treatment of the slurries at 150 °C for 12 h with or without EDTA. 513MOS nanowires with a length of 20–60 μm and a diameter of 60–300 nm were prepared in the case of double injection (adding MgSO4 · 7H2O and NH4OH solutions simultaneously into water), compared with the 513MOS with a length of 20–30 μm and a diameter of 0.3–1.7 μm in the case of the single injection (adding MgSO4 · 7H2O solution into NH4OH solution). The presence of minor amount of EDTA in the single injection method led to the formation of 513MOS nanowires with a length of 100–200 μm, a diameter of 80–200 nm, and an aspect ratio of up to 1000. The analysis of the experimental results indicated that the hydrothermal solutions with a lower supersaturation were favorable for the preferential growth of 513MOS nanowires along b axis

    Development of cordycepin formulations for preclinical and clinical studies

    Get PDF
    There is extensive literature on in vivo studies with cordycepin but these studies were generally conducted without validation of the various formulations, especially in terms of the solubility of cordycepin in the dosing vehicles used. Cordycepin is a promising drug candidate in multiple therapeutic areas and there is a growing interest in studies aimed at assessing the pharmacological activity of this compound in relevant animal disease models. It is likely that many reported in vivo studies used formulations in which cordycepin was incompletely soluble. This can potentially confound the interpretation of pharmacokinetics and efficacy results. Furthermore, the presence of particles in intravenously administered suspension can cause adverse effects and should be avoided. Here we present the results from our development of simple and readily applicable formulations of cordycepin based on quantitative solubility assessment. Homogeneous solutions of cordycepin were prepared in phosphate-buffered saline (PBS) at different pH levels, suitable as formulations for both intravenously and oral administration. For the purpose of high-dose oral administration we also developed propylene glycol (PPG)-based vehicles in which cordycepin is completely soluble. The stability of the newly developed formulations was also assessed, as well the feasibility of their sterilisation by filtration. Additionally, an HPLC-UV method for the determination of cordycepin in the formulations, which may also be useful for other purposes, was developed and validated. Our study could provide useful information for improvement of future preclinical and clinical studies involving cordycepin

    Optimal Estimation of Ion-Channel Kinetics from Macroscopic Currents

    Get PDF
    Markov modeling provides an effective approach for modeling ion channel kinetics. There are several search algorithms for global fitting of macroscopic or single-channel currents across different experimental conditions. Here we present a particle swarm optimization(PSO)-based approach which, when used in combination with golden section search (GSS), can fit macroscopic voltage responses with a high degree of accuracy (errors within 1%) and reasonable amount of calculation time (less than 10 hours for 20 free parameters) on a desktop computer. We also describe a method for initial value estimation of the model parameters, which appears to favor identification of global optimum and can further reduce the computational cost. The PSO-GSS algorithm is applicable for kinetic models of arbitrary topology and size and compatible with common stimulation protocols, which provides a convenient approach for establishing kinetic models at the macroscopic level
    corecore