1,236 research outputs found

    The luminosity function of Swift long gamma-ray bursts

    Get PDF
    The accumulation of Swift observed gamma-ray bursts (GRBs) has gradually made it possible to directly derive a GRB luminosity function (LF) from the observational luminosity distribution. However, two complexities are involved: (i) the evolving connection between GRB rate and cosmic star formation rate; and (ii) observational selection effects due to telescope thresholds and redshift measurements. With a phenomenological investigation of these two complexities, we constrain and discriminate two popular competing LF models (i.e. the broken-power-law LF and the single-power-law LF with an exponential cut-off at low luminosities). As a result, we find that the broken-power-law LF may be more favoured by observations, with a break luminosity L b= 2.5 × 10 52ergs -1 and prior- and post-break indices ν 1= 1.72 and ν 2= 1.98. Regarding an extra evolution effect expressed by a factor (1 +z) δ, if the metallicity of GRB progenitors is lower than ~0.1Z ⊙ as expected by some collapsar models, then there may be no extra evolution effect other than the metallicity evolution (i.e. δ approaches zero). Alternatively, if we remove the theoretical metallicity requirement, then a relationship between the degenerate parameters δ and Z max can be found, very roughly, δ~ 2.4(Z max/Z ⊙- 0.06). This indicates that extra evolution could become necessary for relatively high metallicities. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.published_or_final_versio

    Optimization of RAPD-PCR reaction system for genetic relationships analysis of 15 camellia cultivars

    Get PDF
    With orthogonal analysis by L27(36), the random amplified polymorphic DNA (RAPD)-PCR optimization reaction system for camellia were obtained. Results showed that the optimization system was 10×PCR Buffer (2.5 L), 25 mM MgCl2 (2.5 L), 2.5 mM dNTPs (2.0 L), 20 M primer (1.0 L), Tag (1.5 U), temple DNA (40 ng or so) and added ddH2O to the total volume 25 uL; suitable annealing temperature was 36°C. With the optimized system and fifteen 10 nt random primers, we analyzed 15 camellia cultivars and observed 102 clear amplified loci, in which polymorphic loci were 79 while the percentage of polymorphic loci were 77.54%. Cluster analysis showed that the four groups were divided at the point 0.75 of similarity coefficient, indicating relatively high genetic diversity. We also found that the gene controlling petal color may play an important role in RAPD analysis. Moreover, genetic diversities based on RAPD analysis could be clearly reflected by morphological traits among 15 camellia cultivars. This study showed the RAPD optimization system was suitable and RAPD molecular marker was effective and useful tool for detection of genetic relationships among camellia cultivars

    Effects of L-arginine on intestinal development and endogenous arginine-synthesizing enzymes in neonatal pigs

    Get PDF
    This study aimed to investigate the effects of dietary L-arginine supplementation on the intestinal development of neonatal piglets and the underlying mechanisms. 36 neonatal piglets were randomly allocated into three diet groups: control group (supplemented with 0% L-arginine), 0.4 and 0.8% Larginine groups. When compared with the control, dietary supplementation with L-arginine decreased (P<0.05) blood urea nitrogen (BUN), and improved (P<0.05) serum T3 and insulin level of the piglets on day 11. Arginine and its metabolites (citrulline and ornithine) were elevated, additionally, dietary supplementation with 0.8% L-arginine markedly enhanced jejunal villus height, villus area on day 11 and D-xylose absorption rate on day 19. Dietary supplementation with 0.8% L-arginine increased (P<0.05) activities of maltose and lactose on day 18, respectively. This effect correlated with profound change in enzyme activities as inducible nitric oxide synthetase (iNOS), glutamine synthetase (GS) and ornithine decarboxylase (ODC) were elevated on day 18. The concentrations of spermine was increased (P<0.05) by L-arginine supplementation on day 18. These results collectively suggest that dietary  Larginine supplementation improves protein synthesis and intestinal development of the neonatal pigs, the underlying mechanism includes dietary L-arginine supplementation which regulated the productions of intestinal polyamine in jejunum, and stimulated endogenous arginine-synthesizing enzymes in neonatal piglets.Key words: Neonatal pig, L-arginine, intestinal development, arginine-synthetases

    A resonance Raman spectroscopic and CASSCF investigation of the Franck-Condon region structural dynamics and conical intersections of thiophene

    Get PDF
    Resonance Raman spectra were acquired for thiophene in cyclohexane solution with 239.5 and 266 nm excitation wavelengths that were in resonance with ∼240 nm first intense absorption band. The spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion mostly along the reaction coordinates of six totally symmetry modes and three nontotally symmetry modes. The appearance of the nontotally symmetry modes, the CS antisymmetry stretch +C-C=C bend mode v 21 (B 2) at 754 cm-1 and the H 7 C 3 C 4 H 8 twist 9 (A 2) at 906 cm -1, suggests the existence of two different types of vibronic-couplings or curve-crossings among the excited states in the Franck-Condon region. The electronic transition energies, the excited state structures, and the conical intersection points 1B 1/ 1A 1 and 1B 2 / 1A 1 between 2 1A 1 and 1 1B 2 or 1 1B 1 potential energy surfaces of thiophene were determined by using complete active space self-consistent field theory computations. These computational results were correlated with the Franck-Condon region structural dynamics of thiophene. The ring opening photodissociation reaction pathway through cleavage of one of the C-S bonds and via the conical intersection point 1B/ 1A 1 was revealed to be the predominant ultrafast reaction channel for thiophene in the lowest singlet excited state potential energy hypersurface, while the internal conversion pathway via the conical intersection point 1B 2 / 1A 1 was found to be the minor decay channel in the lowest singlet excited state potential energy hypersurface. © 2010 American Institute of Physics.published_or_final_versio

    The application of silica-based aerogel board on the fire resistance and thermal insulation performance enhancement of existing external wall system retrofit

    Get PDF
    Due to the need of good thermal performance, external wall insulation (EWI) is usually made of materials that are not fire resistant and sometimes flammable. That restricts its application to a particular circumstance such as limited building height. Hence, a material with good thermal insulation and fire resistance performance would allow EWI to be more widely applied. This paper introduces a novel material: a silica-based aerogel porous board, which differs itself from mainstream products available in the market because of its outstanding properties, such as low density, high surface area, low thermal conductivity and superhydrophobicity. Herein, its thermal insulation and fire-resistant performance were tested and compared with commercial products. The cone calorimeter analysis results indicated that the aerogel porous board could improve the fire resistance performance. Moreover, the evaluation of thermal insulation performance suggested that the application of an aerogel porous board on the external stone wall of existing buildings can decrease the U-value by 60%. Through the detailed insight into the case-study, it is quite clear that the carbon impact of building stock could be greatly reduced by means of a coherent set of building envelope retrofitting actions based on this innovative heat insulation material, without compromising the fire safety

    Aggregate-forming semi-synthetic chlorophyll derivatives / Ti₃C₂Tₓ MXene hybrids for photocatalytic hydrogen evolution

    Get PDF
    Chlorophylls (Chls) are the most abundant natural pigments having excellent opt-electrical and semi-conductive properties. Ti3C2Tx MXene, one of the most extensively studied 2D noble metal-free co-catalyst, features outstanding electrochemical properties. This work compares three aggregate-forming chlorophyll derivatives (Chl-n; n = 1–3), namely, zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (Chl-1), zinc dodecyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (Chl-2) and zinc dodecyl 131-deoxo-3-devinyl-131-dicyanomethylene-3-hydroxymethyl-pyropheophorbide-a (Chl-3), as light-harvesting antenna pigments in the MXene-based photocatalytic system for hydrogen evolution under the white light illumination (λ > 420 nm). The hydrogen evolution reaction (HER) of these Chls depends on the peripheral substituent groups at the C13- and/or C17-positions of the chlorin macrocyclic π-system. Differences among these Chl-n sensitized Ti3C2Tx MXene (Chl-n@Ti3C2Tx) are compared in terms of their light-harvesting ability, morphology, charge transfer efficiency and photocatalytic performance. The best HER performance is found to be as high as 122 μmol/h/gcat with the Chl-3@Ti3C2Tx composite. This work leads the direction in synthesizing Chls in Chl/MXene hybrid structure suitable for highly efficient photocatalytic HER

    Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: Dependence of performance on the central coordinating metals

    Get PDF
    Development of efficient photocatalytic hydrogen evolution reaction (HER) with illumination of visible light is challenging. In this work, five chlorophyll derivatives (M-Chls; M = H2/Cu/Ni/Co/Zn) with different central ions in its cyclic tetrapyrrole ring including free base, copper, nickel, cobalt, and zinc were synthesized and employed as the effective visible-light harvester for efficient HER. In addition, two-dimensional (2D) noble metal-free co-catalyst Ti3C2Tx MXene was used as an excellent electron capturer due to its outstanding conductivity property. These M-Chls are modified on the surface of Ti3C2Tx MXene with 2D accordion-like morphology by means of a simple deposition process to form noble metal-free Chl/Ti3C2Tx-based photocatalysts for HER. It is found that the best HER performance as high as 49 μmol/h/gcat was achieved with the Co-Chl@Ti3C2Tx hybrid, which was much higher than those of other M-Chl@Ti3C2Tx composites. This research provides a specific way to synthesize low-cost and environmentally friendly natural Chls for developing highly efficient photocatalytic HER through molecular engineering

    Dynamics and quantum Zeno effect for a qubit in either a low- or high-frequency bath beyond the rotating-wave approximation

    Get PDF
    Laboratory of Physical Sciences; National Security Agency; Army Research Office; National Science Foundation [0726909]; JSPS-RFBR [09-02-92114]; MEXT; Funding Program for Innovative R&D on ST (FIRST); National Natural Science Foundation of China [10904126We use a non-Markovian approach to study the decoherence dynamics of a qubit in either a low- or high-frequency bath modeling the qubit environment. This is done for two separate cases: either with measurements or without them. This approach is based on a unitary transformation and does not require the rotating-wave approximation. In the case without measurement, we show that, for low- frequency noise, the bath shifts the qubit energy toward higher energies (blue shift), while the ordinary high-frequency cutoff Ohmic bath shifts the qubit energy toward lower energies (red shift). In order to preserve the coherence of the qubit, we also investigate the dynamics of the qubit subject to measurements (quantum Zeno regime) in two cases: low- and high-frequency baths. For very frequent projective measurements, the low- frequency bath gives rise to the quantum anti-Zeno effect on the qubit. The quantum Zeno effect only occurs in the high-frequency-cutoff Ohmic bath, after counterrotating terms are considered. In the condition that the decay rate due to the two kinds of baths are equal under the Wigner-Weisskopf approximation, we find that without the approximation, for a high-frequency environment, the decay rate should be faster (without measurements) or slower (with frequent measurements, in the Zeno regime), compared to the low- frequency bath case. The experimental implementation of our results here could distinguish the type of bath (either a low- or high-frequency one) and protect the coherence of the qubit by modulating the dominant frequency of its environment
    • …
    corecore