4,927 research outputs found
Organic diagenesis in sediment and its impact on the adsorption of bisphenol A and nonylphenol onto marine sediment
Hydrophobic organic contaminants in marine water are mostly adsorbed onto (partitioned into) sediment organic matter (SOM). To study the impact of SOM diagenesis on sediment adsorption properties, artificial sediment with rich SOM content was incubated for more than 120. days. The sediment was sampled every week, and batch sediment adsorption tests were conducted with bisphenol A (BPA) and nonylphenol (NP) as the model pollutants. The results show that the amount of organic matter loaded in the sediment decreased by nearly 80% during incubation. For the incubated sediment, the BPA partition coefficient, Kd, decreased whereas the organic normalized partition coefficient, Koc, more than doubled. The experiments with NP show an even greater increase in Koc. Organic matter diagenesis shows a profound effect on the adsorption behavior of sediment, as the SOM residue has an increasing affinity and partition capacity for organic contaminants. © 2010 Elsevier Ltd.postprin
Recommended from our members
In situ loading and delivery of short single- And double-stranded dna by supramolecular organic frameworks
Short DNA represents an important class of biomacromolecules that are widely applied in gene therapy, editing, and modulation. However, the development of simple and reliable methods for their intracellular delivery remains a challenge. Herein, we describe that seven water-soluble, homogeneous supramolecular organic frameworks (SOFs) with a well-defined pore size and high stability in water that can accomplish in situ inclusion of single-stranded (ss) and double-stranded (ds) DNA (21, 23, and 58 nt) and effective intracellular delivery (including two noncancerous and six cancerous cell lines). Fluorescence quenching experiments for single and double endlabeled ss- and ds-DNA support that the DNA sequences can be completely enveloped by the SOFs. Confocal laser scanning microscopy and flow cytometry reveal that five of the SOFs exhibit excellent delivery efficiencies that, in most of the studied cases, outperform the commercial standard Lipo2000, even at low SOF-nucleic acid ratios. In addition to high delivery efficiencies, the watersoluble, self-assembled SOF carriers have a variety of advantages, including convenient preparation, high stability, and in situ DNA inclusion, which are all critical for practical applications in nucleic acid delivery
Acceptors in undoped gallium antimonide
Undoped GaSb materials were studied by temperature dependent Hall (TDH) measurements and photoluminescence (PL). The TDH data reveals four acceptor levels (having ionization energies of 7meV, 32meV, 89meV and 123meV) in the as-grown undoped GaSb samples. The 32meV and the 89meV levels were attributed to the GaSb defect and the VGa-related defect. The Ga Sb defect was found to be the important acceptor responsible for the p-type nature of the present undoped GaSb samples because of its abundance and its low ionization energy. This defect was thermally stable after the 500°C annealing. Similar to the non-irradiated samples, the 777meV and the 800meV PL signals were also observed in the electron irradiated undoped GaSb samples. The decrease of the two peaks' intensities with respect to the electron irradiation dosage reveals the introduction of a non-radiative defect during the electron irradiation process, which competes with the transition responsible for the 777meV and the 800meV PL peaks.published_or_final_versio
Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties
This paper reports on a new and swift hydrothermal chemical route to prepare
titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting
material. The synthesis approach uses a commercial solution of TiCl3 as
titanium source to prepare an amorphous precursor, circumventing the use of
hazardous chemical compounds. The influence of the reaction temperature and
dwell autoclave time on the structure and morphology of the synthesised
materials was studied. Homogeneous titanate nanotubes with a high
length/diameter aspect ratio were synthesised at 160^{\circ}C and 24 h. A band
gap of 3.06\pm0.03 eV was determined for the TNS samples prepared in these
experimental conditions. This value is red shifted by 0.14 eV compared to the
band gap value usually reported for the TiO2 anatase. Moreover, such samples
show better adsorption capacity and photocatalytic performance on the dye
rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98%
reduction of the R6G concentration was achieved after 45 minutes of irradiation
of a 10 ppm dye aqueous solution and 1 g/L of TNS catalyst.Comment: 29 pages, 10 figures, accepted for publication in Journal of
Materials Scienc
3D time series analysis of cell shape using Laplacian approaches
Background:
Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes.
Results:
We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells.
Conclusions:
The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations
Deformation of the Fermi surface in the extended Hubbard model
The deformation of the Fermi surface induced by Coulomb interactions is
investigated in the t-t'-Hubbard model. The interplay of the local U and
extended V interactions is analyzed. It is found that exchange interactions V
enhance small anisotropies producing deformations of the Fermi surface which
break the point group symmetry of the square lattice at the Van Hove filling.
This Pomeranchuck instability competes with ferromagnetism and is suppressed at
a critical value of U(V). The interaction V renormalizes the t' parameter to
smaller values what favours nesting. It also induces changes on the topology of
the Fermi surface which can go from hole to electron-like what may explain
recent ARPES experiments.Comment: 5 pages, 4 ps figure
From error bounds to the complexity of first-order descent methods for convex functions
This paper shows that error bounds can be used as effective tools for
deriving complexity results for first-order descent methods in convex
minimization. In a first stage, this objective led us to revisit the interplay
between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can
show the equivalence between the two concepts for convex functions having a
moderately flat profile near the set of minimizers (as those of functions with
H\"olderian growth). A counterexample shows that the equivalence is no longer
true for extremely flat functions. This fact reveals the relevance of an
approach based on KL inequality. In a second stage, we show how KL inequalities
can in turn be employed to compute new complexity bounds for a wealth of
descent methods for convex problems. Our approach is completely original and
makes use of a one-dimensional worst-case proximal sequence in the spirit of
the famous majorant method of Kantorovich. Our result applies to a very simple
abstract scheme that covers a wide class of descent methods. As a byproduct of
our study, we also provide new results for the globalization of KL inequalities
in the convex framework.
Our main results inaugurate a simple methodology: derive an error bound,
compute the desingularizing function whenever possible, identify essential
constants in the descent method and finally compute the complexity using the
one-dimensional worst case proximal sequence. Our method is illustrated through
projection methods for feasibility problems, and through the famous iterative
shrinkage thresholding algorithm (ISTA), for which we show that the complexity
bound is of the form where the constituents of the bound only depend
on error bound constants obtained for an arbitrary least squares objective with
regularization
Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model
Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
- …
