1,276 research outputs found
NARX-based nonlinear system identification using orthogonal least squares basis hunting
An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, whichplaces the RBF or kernel centers at the training input data points and use a fixed common variance for all the regressors, the proposed OLS-BH technique tunes the RBF center and diagonal covariance matrix of individual regressor by minimizing the training mean square error. An efficient optimization method isadopted for this basis hunting to select regressors in an orthogonal forward selection procedure. Experimental results obtained using this OLS-BH technique demonstrate that it offers a state-of-the-art method for constructing parsimonious RBF models with excellent generalization performance
Experiments with repeating weighted boosting search for optimization in signal processing applications
Sparse support vector regression based on orthogonal forward selection for the generalised kernel model
Some Bianchi Type III String Cosmological Models with Bulk Viscosity
We investigate the integrability of cosmic strings in Bianchi III space-time
in presence of a bulk viscous fluid by applying a new technique. The behaviour
of the model is reduced to the solution of a single second order nonlinear
differential equation. We show that this equation admits an infinite family of
solutions. Some physical consequences from these results are also discussed.Comment: 12 pages, no figure. To appear in Int. J. Theor. Phy
A New Class of Inhomogeneous String Cosmological Models in General Relativity
A new class of solutions of Einstein field equations has been investigated
for inhomogeneous cylindrically symmetric space-time with string source. To get
the deterministic solution, it has been assumed that the expansion ()
in the model is proportional to the eigen value of the shear
tensor . Certain physical and geometric properties of the
models are also discussed.Comment: 12 pages, no figure. Submitted to Astrophys. Space Sci. arXiv admin
note: substantial text overlap with arXiv:0705.090
Cylindrically Symmetric Inhomogeneous Universes with a Cloud of Strings
Cylindrically symmetric inhomogeneous string cosmological models are
investigated in presence of string fluid as a source of matter. To get the
three types of exact solutions of Einstein's field equations we assume , and . Some physical and geometric
aspects of the models are discussed.Comment: 9 page
Dynamics of the entanglement rate in the presence of decoherence
The dynamics of the entanglement rate are investigated in this paper for
pairwise interaction and two special sets of initial states. The results show
that for the given interaction and the decoherence scheme, the competitions
between decohering and entangling lead to two different results--some initial
states may be used to prepare entanglement while the others do not. A criterion
on decohering and entangling is also presented and discussed.Comment: 5 pages, 2 figure
Adiabatic evolution under quantum control
One of the difficulties in adiabatic quantum computation is the limit on the
computation time. Here we propose two schemes to speed-up the adiabatic
evolution. To apply this controlled adiabatic evolution to adiabatic quantum
computation, we design one of the schemes without any prior knowledge of the
instantaneous eigenstates of the final Hamiltonian. Whereas in another scheme,
the control is constructed with the instantaneous eigenstate that is the target
state of the control. As an illustration, we study a two-level system driven by
a time-dependent magnetic field under the control. The physics behind the
control scheme is explained.Comment: 5 pages, 3 figure
Charge ordering in charge-compensated by oxonium ions
Charge ordering behavior is observed in the crystal prepared through the
immersion of the crystal in distilled water. Discovery of the
charge ordering in the crystal with Na content less than 0.5 indicates that the
immersion in water brings about the reduction of the
. The formal valence of Co changes from +3.59 estimated from
the
Na content to +3.5, the same as that in . The charge
compensation is confirmed to arise from the intercalation of the oxonium ions
as occurred in the superconducting sodium cobalt oxide
bilayer-hydrate.\cite{takada1}
The charge ordering is the same as that observed in . It
suggests that the Co valence of +3.5 is necessary for the charge ordering.Comment: 5 pages, 4 figure
A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion
AbstractConsidering the present limitation of the need for external parameters to describe the nucleus–nucleus potential and the couplings in the coupled-channels calculations, this work introduces an improved method without adjustable parameter to overcome the limitation and then sort out the positive Q-value neutron transfers (PQNT) effects based on the CCFULL calculations. The corresponding analysis for Ca+Ca, S,Ca+Sn, and S,Ca+Zr provides a reliable proof and a quantitative evaluation for the residual enhancement (RE) related to PQNT. In addition, the RE for S32,Ca40+Zr94 shows an unexpected larger enhancement than S32,Ca40+Zr96 despite the similar multi-neutron transfer Q-values. This method should rather strictly test the fusion models and be helpful for excavating the underlying physics
- …
