724 research outputs found

    Emergence of Pediatric Melioidosis in Siem Reap, Cambodia

    Get PDF
    We describe the first cases of pediatric melioidosis in Cambodia. Thirty-nine cases were diagnosed at the Angkor Hospital for Children, Siem Reap, between October 2005 and December 2008 after the introduction of microbiology capabilities. Median age was 7.8 years (range = 1.6–16.2 years), 15 cases were male (38%), and 4 cases had pre-existing conditions that may have pre-disposed the patient to melioidosis. Infection was localized in 27 cases (69%) and disseminated in 12 cases (31%). Eleven cases (28%) were treated as outpatients, and 28 (72%) cases were admitted. Eight children (21%) died a median of 2 days after admission; seven deaths were attributable to melioidosis, all of which occurred in children receiving suboptimal antimicrobial therapy and before bacteriological culture results were available. Our findings indicate the need for heightened awareness of melioidosis in Cambodia, and they have led us to review microbiology procedures and antimicrobial prescribing of suspected and confirmed cases

    Burkholderia pseudomallei Antibodies in Children, Cambodia

    Get PDF
    Antibodies to Burkholderia pseudomallei were detected in 16% of children in Siem Reap, Cambodia. This organism was isolated from 30% of rice paddies in the surrounding vicinity. Despite the lack of reported indigenous cases, melioidosis is likely to occur in Cambodia

    Burkholderia pseudomallei Is Spatially Distributed in Soil in Northeast Thailand

    Get PDF
    Melioidosis is a severe infection caused by the environmental bacterium Burkholderia pseudomallei. Soil sampling is important to identify geographic regions where humans and animals are at risk of exposure. The purpose of this study was to examine a factor that has a major bearing on the accuracy of soil sampling: the spatial distribution of B. pseudomallei in soil of a specified sampling site. Soil sampling was performed using a fixed-interval grid of 100 sampling points in each of two sites (disused land and rice field) in northeast Thailand, and the presence and amount of B. pseudomallei determined using culture. Mapping of the presence and B. pseudomallei count demonstrated that samples taken from areas adjacent to sampling points that were culture positive (negative) for B. pseudomallei were also likely to be culture positive (negative), and samples taken from areas adjacent to sampling points with a high (low) B. pseudomallei count were also likely to yield a high (low) count (spatial autocorrelation). These data were used as the basis for highlighting several pitfalls in current approaches to soil sampling, together with a discussion of the suitability of a range of sampling strategies in different geographical locations and for different study objectives

    Defining the True Sensitivity of Culture for the Diagnosis of Melioidosis Using Bayesian Latent Class Models

    Get PDF
    BACKGROUND: Culture remains the diagnostic gold standard for many bacterial infections, and the method against which other tests are often evaluated. Specificity of culture is 100% if the pathogenic organism is not found in healthy subjects, but the sensitivity of culture is more difficult to determine and may be low. Here, we apply Bayesian latent class models (LCMs) to data from patients with a single Gram-negative bacterial infection and define the true sensitivity of culture together with the impact of misclassification by culture on the reported accuracy of alternative diagnostic tests. METHODS/PRINCIPAL FINDINGS: Data from published studies describing the application of five diagnostic tests (culture and four serological tests) to a patient cohort with suspected melioidosis were re-analysed using several Bayesian LCMs. Sensitivities, specificities, and positive and negative predictive values (PPVs and NPVs) were calculated. Of 320 patients with suspected melioidosis, 119 (37%) had culture confirmed melioidosis. Using the final model (Bayesian LCM with conditional dependence between serological tests), the sensitivity of culture was estimated to be 60.2%. Prediction accuracy of the final model was assessed using a classification tool to grade patients according to the likelihood of melioidosis, which indicated that an estimated disease prevalence of 61.6% was credible. Estimates of sensitivities, specificities, PPVs and NPVs of four serological tests were significantly different from previously published values in which culture was used as the gold standard. CONCLUSIONS/SIGNIFICANCE: Culture has low sensitivity and low NPV for the diagnosis of melioidosis and is an imperfect gold standard against which to evaluate alternative tests. Models should be used to support the evaluation of diagnostic tests with an imperfect gold standard. It is likely that the poor sensitivity/specificity of culture is not specific for melioidosis, but rather a generic problem for many bacterial and fungal infections

    Accuracy of a Commercial IgM ELISA for the Diagnosis of Human Leptospirosis in Thailand

    Get PDF
    The Leptospira immunoglobulin M enzyme-linked immunosorbent assay (IgM ELISA) has been recommended for the rapid diagnosis of leptospirosis in endemic areas. We conducted a retrospective case-control study of 218 patients (109 leptospirosis cases confirmed by Leptospira culture and/or microscopic agglutination test and 109 control patients with acute febrile illness) to evaluate the diagnostic accuracy of a commercial IgM ELISA (Panbio) in northeast Thailand. Paired serum samples taken on admission and at least 10 days after the onset of symptoms were tested. Using the cutoff value recommended by the manufacturer (11 Panbio units), sensitivity and specificity of IgM ELISA on paired sera were 90.8% and 55.1%. A receiver operating characteristic curve was used to determine the optimal cutoff value. This was 20 Panbio units, which gave a sensitivity and specificity of 76.1% and 82.6%, respectively, on paired sera. We conclude that using either cutoff value, the accuracy of IgM ELISA is limited in our setting

    Capacity and Utilization of Blood Culture in Two Referral Hospitals in Indonesia and Thailand.

    Get PDF
    It is generally recommended that sepsis patients should have at least two blood cultures obtained before antimicrobial therapy. From 1995 to 2015, the number of blood cultures taken each year in a 1,100-bed public referral hospital in Ubon Ratchathani northeast Thailand rose from 5,235 to 56,719, whereas the number received in an 840-bed referral public hospital in South Sulawesi, Indonesia, in 2015 was 2,779. The proportion of patients sampled for blood cultures out of all inpatients in South Sulawesi in 2015 (9%; 2,779/30,593) was lower than that in Ubon Ratchathani in 2003 (13%; 8,707/66,515), at a time when health expenditure per capita in the two countries was comparable. Under-use of bacterial cultures may lead to an underestimate and underreporting of the incidence of antimicrobial-resistant infections. Raising capacity and utilization of clinical microbiology laboratories in developing countries, at least at sentinel hospitals, to monitor the antimicrobial resistance situation should be prioritized

    Misidentification of Burkholderia pseudomallei as Acinetobacter species in northern Thailand.

    Get PDF
    Background: Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic throughout the tropics. Methods: A study of reported Acinetobacter spp. bacteraemia was performed at Chiang Rai provincial hospital from 2014 to 2015. Isolates were collected and tested for confirmation. Results: A total of 419 putative Acinetobacter spp. isolates from 412 patients were re-identified and 5/419 (1.2%) were identified as B. pseudomallei. Four of the five patients with melioidosis died. An estimated 88/419 (21%) isolates were correctly identified as Acinetobacter spp. Conclusions: Misidentification of Acinetobacter spp. as B. pseudomallei or other bacteria is not uncommon and programmes to address these shortfalls are urgently required

    Molecular detection and speciation of pathogenic Leptospira spp. in blood from patients with culture-negative leptospirosis

    Get PDF
    Abstract Background Pathogenic Leptospira spp. present in the blood of patients with leptospirosis during the first week of symptoms can be detected using culture or PCR. A proportion of patients who are positive by PCR are negative by culture. Leptospira spp. are fastidious bacteria, and we hypothesized that a false-negative culture result may represent infection with a distinct bacterial subset that fail to grow in standard culture medium. Methods We evaluated our hypothesis during a prospective study of 418 consecutive patients presenting to a hospital in northeast Thailand with an acute febrile illness. Admission blood samples were taken for Leptospira culture and PCR. A single tube nested PCR that amplified a region of the rrs gene was developed and applied, amplicons sequenced and a phylogenetic tree reconstructed. Results 39/418 (9%) patients were culture-positive for Leptospira spp., and 81/418 (19%) patients were culture-negative but rrs PCR-positive. The species associated with culture-positive leptospirosis (37 L. interrogans and 2 L. borgpetersenii) were comparable to those associated with culture-negative, PCR-positive leptospirosis (76 L. interrogans, 4 L. borgpetersenii, 1 unidentified, possibly new species). Conclusion Molecular speciation failed to identify a unique bacterial subset in patients with culture-negative, PCR-positive leptospirosis. The rate of false-negative culture was high, and we speculate that antibiotic pre-treatment is the most likely explanation for this.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Repeat Blood Culture Positive for B. pseudomallei Indicates an Increased Risk of Death from Melioidosis

    Get PDF
    Melioidosis, a bacterial infection caused by Burkholderia pseudomallei, is notoriously difficult to cure despite appropriate antimicrobial therapy and has a mortality rate of up to 40%. We demonstrate that a blood culture positive for B. pseudomallei taken at the end of the first and/or second week after hospitalization for melioidosis is a strong prognostic factor for death (adjusted odds ratio = 4.2, 95% confidence interval = 2.1–8.7, P < 0.001 and adjusted odds ratio = 2.6, 95% confidence interval = 1.1–6.0, P = 0.03, respectively). However, repeat cultures of respiratory secretions, urine, throat swabs, or pus/surface swabs provide no prognostic information. This finding highlights the need for follow-up blood cultures in patients with melioidosis

    Competition between Burkholderia pseudomallei and B. thailandensis.

    Get PDF
    BACKGROUND: Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, an often fatal disease in tropical countries. Burkholderia thailandensis is a non-virulent but closely related species. Both species are soil saprophytes but are almost never isolated together. RESULTS: We identified two mechanisms by which B. pseudomallei affects the growth of B. thailandensis. First, we found that six different isolates of B. pseudomallei inhibited the growth of B. thailandensis on LB agar plates. Second, our results indicated that 55% of isolated strains of B. pseudomallei produced a secreted compound that inhibited the motility but not the viability of B. thailandensis. Analysis showed that the active compound was a pH-sensitive and heat-labile compound, likely a protein, which may affect flagella processing or facilitate their degradation. Analysis of bacterial sequence types (STs) demonstrated an association between this and motility inhibition. The active compound was produced from B. pseudomallei during the stationary growth phase. CONCLUSION: Taken together, our results indicate that B. pseudomallei inhibits both the growth and motility of its close relative B. thailandensis. The latter phenomenon appears to occur via a previously unreported mechanism involving flagellar processing or degradation
    corecore