2,896 research outputs found
ESL Club & Women Speak: Our Second Home in America
SWOSU ESL Club Newsletter: Fall 2017 is the third issue of the newsletter for the English as a Second Language Club (ESL).https://dc.swosu.edu/esl/1002/thumbnail.jp
Cbx3 inhibits vascular smooth muscle cell proliferation, migration, and neointima formation
This work was supported by British Heart Foundation (FS/09/044/28007, PG/11/40/28891, PG/13/45/30326, PG/15/11/31279, PG/15/86/31723, and PG/16/1/31892 to QX). This work forms part of the research portfolio for the National Institute for Health Research Biomedical Research Centre at Barts
MiRNA-200c-3p promotes endothelial to mesenchymal transition and neointimal hyperplasia in artery bypass grafts
Increasing evidence has suggested a critical role for endothelial‐to‐mesenchymal transition (EndoMT) in a variety of pathological conditions. MicroRNA‐200c‐3p (miR‐200c‐3p) has been implicated in epithelial‐to‐mesenchymal transition. However, the functional role of miR‐200c‐3p in EndoMT and neointimal hyperplasia in artery bypass grafts remains largely unknown. Here we demonstrated a critical role for miR‐200c‐3p in EndoMT. Proteomics and luciferase activity assays revealed that fermitin family member 2 (FERM2) is the functional target of miR‐200c‐3p during EndoMT. FERMT2 gene inactivation recapitulates the effect of miR‐200c‐3p overexpression on EndoMT, and the inhibitory effect of miR‐200c‐3p inhibition on EndoMT was reversed by FERMT2 knockdown. Further mechanistic studies revealed that FERM2 suppresses smooth muscle gene expression by preventing serum response factor nuclear translocation and preventing endothelial mRNA decay by interacting with Y‐box binding protein 1. In a model of aortic grafting using endothelial lineage tracing, we observed that miR‐200c‐3p expression was dramatically up‐regulated, and that EndoMT contributed to neointimal hyperplasia in grafted arteries. MiR‐200c‐3p inhibition in grafted arteries significantly up‐regulated FERM2 gene expression, thereby preventing EndoMT and reducing neointimal formation. Importantly, we found a high level of EndoMT in human femoral arteries with atherosclerotic lesions, and that miR‐200c‐3p expression was significantly increased, while FERMT2 expression levels were dramatically decreased in diseased human arteries. Collectively, we have documented an unexpected role for miR‐200c‐3p in EndoMT and neointimal hyperplasia in grafted arteries. Our findings offer a novel therapeutic opportunity for treating vascular diseases by specifically targeting the miR‐200c‐3p/FERM2 regulatory axis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland
Nonlinear thermoelectric response of quantum dots: renormalized dual fermions out of equilibrium
The thermoelectric transport properties of nanostructured devices continue to
attract attention from theorists and experimentalist alike as the spatial
confinement allows for a controlled approach to transport properties of
correlated matter. Most of the existing work, however, focuses on
thermoelectric transport in the linear regime despite the fact that the
nonlinear conductance of correlated quantum dots has been studied in some
detail throughout the last decade. Here, we review our recent work on the
effect of particle-hole asymmetry on the nonlinear transport properties in the
vicinity of the strong coupling limit of Kondo-correlated quantum dots and
extend the underlying method, a renormalized superperturbation theory on the
Keldysh contour, to the thermal conductance in the nonlinear regime. We
determine the charge, energy, and heat current through the nanostructure and
study the nonlinear transport coefficients, the entropy production, and the
fate of the Wiedemann-Franz law in the non-thermal steady-state. Our approach
is based on a renormalized perturbation theory in terms of dual fermions around
the particle-hole symmetric strong-coupling limit.Comment: chapter contributed to 'New Materials for Thermoelectric
Applications: Theory and Experiment' Springer Series: NATO Science for Peace
and Security Series - B: Physics and Biophysics, Veljko Zlatic (Editor), Alex
Hewson (Editor). ISBN: 978-9400749863 (2012
Quantum phase transition in a single-molecule quantum dot
Quantum criticality is the intriguing possibility offered by the laws of
quantum mechanics when the wave function of a many-particle physical system is
forced to evolve continuously between two distinct, competing ground states.
This phenomenon, often related to a zero-temperature magnetic phase transition,
can be observed in several strongly correlated materials such as heavy fermion
compounds or possibly high-temperature superconductors, and is believed to
govern many of their fascinating, yet still unexplained properties. In contrast
to these bulk materials with very complex electronic structure, artificial
nanoscale devices could offer a new and simpler vista to the comprehension of
quantum phase transitions. This long-sought possibility is demonstrated by our
work in a fullerene molecular junction, where gate voltage induces a crossing
of singlet and triplet spin states at zero magnetic field. Electronic tunneling
from metallic contacts into the quantum dot provides here the
necessary many-body correlations to observe a true quantum critical behavior.Comment: 8 pages, 5 figure
Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences
Background: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods: Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings: Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance: Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood
Time series analysis of dengue fever and weather in Guangzhou, China
<p>Abstract</p> <p>Background</p> <p>Monitoring and predicting dengue incidence facilitates early public health responses to minimize morbidity and mortality. Weather variables are potential predictors of dengue incidence. This study explored the impact of weather variability on the transmission of dengue fever in the subtropical city of Guangzhou, China.</p> <p>Methods</p> <p>Time series Poisson regression analysis was performed using data on monthly weather variables and monthly notified cases of dengue fever in Guangzhou, China for the period of 2001-2006. Estimates of the Poisson model parameters was implemented using the Generalized Estimating Equation (GEE) approach; the quasi-likelihood based information criterion (QICu) was used to select the most parsimonious model.</p> <p>Results</p> <p>Two best fitting models, with the smallest QICu values, are selected to characterize the relationship between monthly dengue incidence and weather variables. Minimum temperature and wind velocity are significant predictors of dengue incidence. Further inclusion of minimum humidity in the model provides a better fit.</p> <p>Conclusion</p> <p>Minimum temperature and minimum humidity, at a lag of one month, are positively associated with dengue incidence in the subtropical city of Guangzhou, China. Wind velocity is inversely associated with dengue incidence of the same month. These findings should be considered in the prediction of future patterns of dengue transmission.</p
Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells
It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions
- …