30 research outputs found

    Discal Cyst: a Rare Cause of Neurologic Compression in the Young Adult

    Get PDF
    Introduction: discal cysts are rare pathology. Its clinical presentation can be mistaken for disc herniation, with back pain, radiculopathy and neurological defi cit. It is more common in male patients in their fourth life decade. Because they are rare, there is no consensus about the treatment. A great variety of procedures, from medication for the pain to endoscopic or microdiscectomy excision, have been described. Objetive: Describe a case of discal cyst on the l4-l5 level with compression of l5 right nerve root treated successfully with a minimal invasive procedure. Study design: Case report. Methods: Review medical records, pertinent images, interview with the patient and surgical team, intraoperative and histopathological fi ndings. The surgical technique used was minimally invasive. Results: Magnetic resonance imaging (MRI) demonstrated a cystic lesion imaging at the level of the L4-L5 disc. The cystic mass displaced the thecal sac dorsally compressed the L5 transversing root. The patient was submitted to a minimally invasive microendoscopic technique using a tubular retractor. He recovered completely after the procedure, presenting absence of leg pain and went back to his regular activities 3 weeks after the surgery. Histopathological examination of the cyst revealed thick fi brous connective tissue interspersed with areas of chronic infl ammation. Conclusion: Discal cysts are rare intraspinal lesions. They can trigger severe neurological symptoms, and should be differentiated from other forms of epidural cysts and tumors. There are many treatment options that can be chosen from but no consensus. We used a treatment that was less invasive than the ones described in the literature

    Efficacy of Co-administration of Liuwei Dihuang Pills and Ginkgo Biloba Tablets on Albuminuria in Type 2 Diabetes: A 24-Month, Multicenter, Double-Blind, Placebo-Controlled, Randomized Clinical Trial

    Get PDF
    Purpose: We investigated the effects of Traditional Chinese Medicine (TCM) on the occurrence and progression of albuminuria in patients with type 2 diabetes.Methods: In this randomized, double-blind, multicenter, controlled trial, we enrolled 600 type 2 diabetes without diabetic nephropathy (DN) or with early-stage DN. Patients were randomly assigned (1:1) to receive Liuwei Dihuang Pills (LWDH) (1.5 g daily) and Ginkgo biloba Tablets (24 mg daily) orally or matching placebos for 24 months. The primary endpoint was the change in urinary albumin/creatinine ratio (UACR) from baseline to 24 months.Results: There were 431 patients having UACR data at baseline and 24 months following-up in both groups. Changes of UACR from baseline to follow-up were not affected in both groups: −1.61(−10.24, 7.17) mg/g in the TCM group and −0.73(−7.47, 6.75) mg/g in the control group. For patients with UACR ≥30 mg/g at baseline, LWDH and Ginkgo biloba significantly reduced the UACR value at 24 months [46.21(34.96, 58.96) vs. 20.78(9.62, 38.85), P < 0.05]. Moreover, the change of UACR from baseline to follow-up in the TCM group was significant higher than that in the control group [−25.50(−42.30, −9.56] vs. −20.61(−36.79, 4.31), P < 0.05].Conclusion: LWDH and Ginkgo biloba may attenuate deterioration of albuminuria in type 2 diabetes patients. These results suggest that TCM is a promising option of renoprotective agents for early stage of DN.Trial registration: The study was registered in the Chinese Clinical Trial Registry. (no. ChiCTR-TRC-07000037, chictr.org

    Balanced Control System Based on Bidirectional Flyback DC Converter

    No full text
    The inconsistency of the battery pack will cause the “barrel effect“ when the battery pack is working. The battery with lower power will first reach the discharge cut-off condition, resulting in the battery pack not being fully discharged, reducing the battery utilization rate. This paper uses the state of charge (SOC) as an equilibrium variable and the forgetting factor recursive least square–extended Kalman filter (FFRLS-EKF) method to estimate the SOC. Using a balanced topology based on a bidirectional impact direct current (DC) converter, the energy transfer can occur between any battery and only between batteries that need to be balanced, increasing energy utilization and the effect of equalization. The equalization system is simulated under various conditions, which proves the effectiveness of the equalization control system

    Balanced Control System Based on Bidirectional Flyback DC Converter

    No full text
    The inconsistency of the battery pack will cause the “barrel effect“ when the battery pack is working. The battery with lower power will first reach the discharge cut-off condition, resulting in the battery pack not being fully discharged, reducing the battery utilization rate. This paper uses the state of charge (SOC) as an equilibrium variable and the forgetting factor recursive least square–extended Kalman filter (FFRLS-EKF) method to estimate the SOC. Using a balanced topology based on a bidirectional impact direct current (DC) converter, the energy transfer can occur between any battery and only between batteries that need to be balanced, increasing energy utilization and the effect of equalization. The equalization system is simulated under various conditions, which proves the effectiveness of the equalization control system

    Multi-Cell-to-Multi-Cell Battery Equalization in Series Battery Packs Based on Variable Duty Cycle

    No full text
    Batteries are widely used in our lives, but the inevitable inconsistencies in series-connected battery packs will seriously impact their energy utilization, cycle life and even jeopardize their safety in use. This paper proposes a balancing topology structure combining Buck-Boost circuit and switch array to reduce this inconsistency. This structure can realize multi-cell-to-multi-cell (MC2MC) battery balancing by controlling the switch array and having a fast balancing speed, easy expansion and few magnetic components. Then, the operation principle of the proposed balancing topology is analyzed, and the simulation model is verified. In addition, the effects of switching frequency and voltage difference on the equalization effect are further analyzed. The results show that the higher the switching frequency, the lower the time efficiency, but the higher the energy efficiency. The voltage difference significantly impacts the duty cycle, so it is absolutely necessary to introduce a variable duty cycle in the multi-cell-to-multi-cell equalization. Finally, eight series batteries are selected for simulation verification. The simulation results show that, compared with any-cell-to-any-cell (AC2AC) equalization, the time efficiency of multi-cell-to-multi-cell equalization is improved considerably, the energy efficiency is improved slightly, and the variance of the completed equalization is reduced, demonstrating the excellent performance of multi-cell-to-multi-cell equalization

    Crashworthiness Analysis and Multi-Objective Optimization for Concave I-Shaped Honeycomb Structure

    No full text
    Due to their superior structural and mechanical properties, materials with negative Poisson’s ratio are of increasing interest to research scholars, especially in fuel-efficient vehicles. In this work, a new concave I-shaped honeycomb structure is established by integrating the re-entrant hexagon and the I-shaped beam structure, and its negative Poisson’s ratio characteristics and energy absorption properties are investigated. The effect of structural parameters on the energy absorption characteristics is analyzed using the finite element model. The results show that both the specific energy absorption and peak impact force decrease with the increase in cellular length and vertical short cellular height, and increase with the increase in horizontal short cellular length and cellular thickness. To obtain a smaller peak impact force and larger specific energy absorption with smaller mass, the four cell sizes were optimized by using Latin hypercube sampling, Gaussian radial basis function, and non-dominated sorting genetic algorithm II (NSGA-II). Compared with the original design, the SEA increased by 44.175%, and the PCF increased by 25.857%. Meanwhile, the mass decreased by 31.140%. Hence, the optimal structure has better crashworthiness

    Micromechanism Study of Molecular Compatibility of PVDF/PEI Blend Membrane

    No full text
    In this paper, the compatibility of polyetherimide (PEI) with different contents as a high-performance copolymer and polyvinylidene fluoride (PVDF) was studied, and 5%–20% PEI was prepared by the non-solvent-induced phase inversion method. The compatibility of PVDF and PEI was evaluated by analyzing the physical structure and properties of the blend membrane, the microstructure, the glass transition temperature Tg, the enthalpy, and the mechanism of the polymer blend enthalpy change. The results show that the blend membranes have -NH and C=O-N binding energies at X-ray photoelectron spectroscopy (XPS), which preliminarily proves that fluorine–amine bonds are formed between the polymers, and new spectra appeared by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) peaks, which further proves that the two have the formation of fluorine–amine bonds, the Tg and enthalpy of the mixed membrane was increased, and a scanning electron microscope (SEM) observed that the membrane pores changed from finger-like pores to sponge-like macropores. When the content of PEI is 15%, the performance of the blended membrane is the best, the water contact angle increases to 58.5°, the porosity increases to 17.33%, the maximum force increases to 8.04 N, and the elongation at break decreases to 24.26%, the pure water flux is 1870.292 L/m2·h, and the oil rejection is 87%. In addition, the enthalpy change of polymer blending further proves that PEI and PVDF are compatible systems and have a good performance improvement for PVDF

    Crashworthiness Analysis and Multi-Objective Optimization for Concave I-Shaped Honeycomb Structure

    No full text
    Due to their superior structural and mechanical properties, materials with negative Poisson’s ratio are of increasing interest to research scholars, especially in fuel-efficient vehicles. In this work, a new concave I-shaped honeycomb structure is established by integrating the re-entrant hexagon and the I-shaped beam structure, and its negative Poisson’s ratio characteristics and energy absorption properties are investigated. The effect of structural parameters on the energy absorption characteristics is analyzed using the finite element model. The results show that both the specific energy absorption and peak impact force decrease with the increase in cellular length and vertical short cellular height, and increase with the increase in horizontal short cellular length and cellular thickness. To obtain a smaller peak impact force and larger specific energy absorption with smaller mass, the four cell sizes were optimized by using Latin hypercube sampling, Gaussian radial basis function, and non-dominated sorting genetic algorithm II (NSGA-II). Compared with the original design, the SEA increased by 44.175%, and the PCF increased by 25.857%. Meanwhile, the mass decreased by 31.140%. Hence, the optimal structure has better crashworthiness

    Flexible Multifunctional Self-Expanding Electrospun Polyacrylic Acid Covalently Cross-Linked Polyamide 66 Nanocomposite Fiber Membrane with Excellent Oil/Water Separation and High pH Stability Performances

    No full text
    In this paper, we report for the first time the successful formation of a covalent cross-linking structure between polyacrylic acid and polyamide 66 in an electrospun nanofiber membrane by the facilitated amidation reaction using N-Hydroxy-succinimide (NHS) and N-(3-Dimethylaminopropyl)-N’-ethyl-carbodiimide hydrochloride (EDC). The structure and properties of the fiber membrane are characterized using scanning electron microscopy, wide field X-ray diffraction and differential scanning calorimetry. The results show that the presence of the cross-linked structure not only affects the construction of the nanofiber network framework but also influences the pore size distribution and size of the fiber membrane surface, which in turn affects its retention of contaminants and water absorption performance. After modification, the cross-linked membranes exhibited a significant retention performance of up to 77% for methyl tert-butyl ether (MTBE) with a reduced pure water flux. Furthermore, after crosslinking, the fiber membrane has been strongly enhanced with more stable pH response behavior
    corecore