24 research outputs found

    A liquid chromatography-tandem mass spectrometry based method for the quantification of adenosine nucleotides and NAD precursors and products in various biological samples

    Get PDF
    Adenine nucleotides (AN) are ubiquitous metabolites that regulate cellular energy metabolism and modulate cell communication and inflammation. To understand how disturbances in AN balance arise and affect cellular function, robust quantification techniques for these metabolites are crucial. However, due to their hydrophilicity, simultaneous quantification of AN across various biological samples has been challenging. Here we present a hydrophilic interaction high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based method for the quantification of 26 adenosine nucleotides and precursors as well as metabolic products of nicotinamide adenine dinucleotide (NAD) in plasma, liver, and adipose tissue samples as well as cell culture supernatants and cells. Method validation was performed with regard to linearity, accuracy, precision, matrix effects, and carryover. Finally, analysis of cell culture supernatants derived from intestinal organoids and RAW 264.7 cells illustrates that the here described method is a reliable and easy-to-use tool to quantify AN and opens up new avenues to understand the role of AN generation and breakdown for cellular functions

    Sex differences in lipidomic and bile acid plasma profiles in patients with and without coronary artery disease

    Get PDF
    Background: Lipids, including phospholipids and bile acids, exert various signaling effects and are thought to contribute to the development of coronary artery disease (CAD). Here, we aimed to compare lipidomic and bile acid profiles in the blood of patients with and without CAD stratified by sex. Methods: From 2015 to 2022, 3,012 patients who underwent coronary angiography were recruited in the INTERCATH cohort. From the overall cohort, subgroups were defined using patient characteristics such as CAD vs. no CAD, 1st vs. 3rd tertile of LDL-c, and female vs. male sex. Hereafter, a matching algorithm based on age, BMI, hypertension status, diabetes mellitus status, smoking status, the Mediterranean diet score, and the intake of statins, triglycerides, HDL-c and hs-CRP in a 1:1 ratio was implemented. Lipidomic analyses of stored blood samples using the Lipidyzer platform (SCIEX) and bile acid analysis using liquid chromatography with tandem mass spectrometry (LC‒MS/MS) were carried out. Results: A total of 177 matched individuals were analyzed; the median ages were 73.5 years (25th and 75th percentile: 64.1, 78.2) and 71.9 years (65.7, 77.2) for females and males with CAD, respectively, and 67.6 years (58.3, 75.3) and 69.2 years (59.8, 76.8) for females and males without CAD, respectively. Further baseline characteristics, including cardiovascular risk factors, were balanced between the groups. Women with CAD had decreased levels of phosphatidylcholine and diacylglycerol, while no differences in bile acid profiles were detected in comparison to those of female patients without CAD. In contrast, in male patients with CAD, decreased concentrations of the secondary bile acid species glycolithocholic and lithocholic acid, as well as altered levels of specific lipids, were detected compared to those in males without CAD. Notably, male patients with low LDL-c and CAD had significantly greater concentrations of various phospholipid species, particularly plasmalogens, compared to those in high LDL-c subgroup. Conclusions: We present hypothesis-generating data on sex-specific lipidomic patterns and bile acid profiles in CAD patients. The data suggest that altered lipid and bile acid composition might contribute to CAD development and/or progression, helping to understand the different disease trajectories of CAD in women and men. Registration: https://clinicaltrials.gov/ct2/show/NCT04936438, Unique identifier: NCT04936438

    MALDI MSI for a fresh view on atherosclerotic plaque lipids

    Get PDF
    The distribution of atherosclerotic lesions in the aorta and its branches of ApoE knockout (Apo

    DataSheet_1_A liquid chromatography-tandem mass spectrometry based method for the quantification of adenosine nucleotides and NAD precursors and products in various biological samples.docx

    No full text
    Adenine nucleotides (AN) are ubiquitous metabolites that regulate cellular energy metabolism and modulate cell communication and inflammation. To understand how disturbances in AN balance arise and affect cellular function, robust quantification techniques for these metabolites are crucial. However, due to their hydrophilicity, simultaneous quantification of AN across various biological samples has been challenging. Here we present a hydrophilic interaction high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based method for the quantification of 26 adenosine nucleotides and precursors as well as metabolic products of nicotinamide adenine dinucleotide (NAD) in plasma, liver, and adipose tissue samples as well as cell culture supernatants and cells. Method validation was performed with regard to linearity, accuracy, precision, matrix effects, and carryover. Finally, analysis of cell culture supernatants derived from intestinal organoids and RAW 264.7 cells illustrates that the here described method is a reliable and easy-to-use tool to quantify AN and opens up new avenues to understand the role of AN generation and breakdown for cellular functions.</p

    Effects of Pharmacological Thermogenic Adipocyte Activation on Metabolism and Atherosclerotic Plaque Regression

    No full text
    Thermogenic adipocytes burn nutrients in order to produce heat. Upon activation, brown adipose tissue (BAT) clears vast amounts of lipids and glucose from the circulation and thus substantially lowers plasma lipid levels. As a consequence, BAT activation protects from the development of atherosclerosis. However, it is unclear if pharmacologic activation of BAT can be exploited therapeutically to reduce plaque burden in established atherosclerotic disease. Here we study the impact of thermogenic adipose tissues on plaque regression in a mouse model of atherosclerosis. Thermogenic adipocytes in atherosclerotic low-density lipoprotein (LDL) receptor (LDLR)-deficient mice were pharmacologically activated by dietary CL316,243 (CL) treatment for 4 weeks and the outcomes on metabolically active tissues, plasma lipids and atherosclerosis were analyzed. While the chronic activation of thermogenic adipocytes reduced adiposity, increased browning of white adipose tissue (WAT), altered liver gene expression, and reduced plasma triglyceride levels, atherosclerotic plaque burden remained unchanged. Our findings suggest that despite improving adiposity and plasma triglycerides, pharmacologic activation of thermogenic adipocytes is not able to reverse atherosclerosis in LDLR-deficient mice

    Oxysterol 7-α Hydroxylase (CYP7B1) Attenuates Metabolic-Associated Fatty Liver Disease in Mice at Thermoneutrality

    No full text
    Ambient temperature is an important determinant of both the alternative bile acid synthesis pathway controlled by oxysterol 7-α hydroxylase (CYP7B1) and the progression of metabolic-associated fatty liver disease (MAFLD). Here, we investigated whether CYP7B1 is involved in the etiology of MAFLD under conditions of low and high energy expenditure. For this, Cyp7b1−/− and wild type (WT) mice were fed a choline-deficient high-fat diet and housed either at 30 °C (thermoneutrality) or at 22 °C (mild cold). To study disease phenotype and underlying mechanisms, plasma and organ samples were analyzed to determine metabolic parameters, immune cell infiltration by immunohistology and flow cytometry, lipid species including hydroxycholesterols, bile acids and structural lipids. In WT and Cyp7b1−/− mice, thermoneutral housing promoted MAFLD, an effect that was more pronounced in CYP7B1-deficient mice. In these mice, we found higher plasma alanine aminotransferase activity, hyperlipidemia, hepatic accumulation of potentially harmful lipid species, aggravated liver fibrosis, increased inflammation and immune cell infiltration. Bile acids and hydroxycholesterols did not correlate with aggravated MAFLD in Cyp7b1−/− mice housed at thermoneutrality. Notably, an up-regulation of lipoprotein receptors was detected at 22 °C but not at 30 °C in livers of Cyp7b1−/− mice, suggesting that accelerated metabolism of lipoproteins carrying lipotoxic molecules counteracts MAFLD progression

    A Gas Chromatography Mass Spectrometry-Based Method for the Quantification of Short Chain Fatty Acids

    No full text
    Short Chain Fatty Acids (SCFAs) are produced by the gut microbiota and are present in varying concentrations in the intestinal lumen, in feces but also in the circulatory system. By interacting with different cell types in the body, they have a great impact on host metabolism and their exact quantification is indispensable. Here, we present a derivatization-free method for the gas chromatography mass spectrometry (GC-MS) based quantification of SCFAs in plasma, feces, cecum, liver and adipose tissue. SCFAs were extracted using ethanol and concentrated by alkaline vacuum centrifugation. To allow volatility for separation by GC, samples were acidified with succinic acid. Analytes were detected in selected ion monitoring (SIM) mode and quantified using deuterated internal standards and external calibration curves. Method validation rendered excellent linearity (R2 > 0.99 for most analytes), good recovery rates (95–117%), and good reproducibility (RSD: 1–4.5%). Matrix effects were ruled out in plasma, feces, cecum, liver and fat tissues where most abundant SCFAs were detected and accurately quantified. Finally, applicability of the method was assessed using samples derived from conventionally raised versus germ-free mice or mice treated with antibiotics. Altogether, a reliable, fast, derivatization-free GC-MS method for the quantification of SCFAs in different biological matrices was developed allowing for the study of the (patho)physiological role of SCFAs in metabolic health

    Implementation of a Mobile Application in Acute Stroke Care Documentation

    No full text
    Acute stroke care is a time-critical process. Improving communication and documentation process may support a positive effect on medical outcome. To achieve this goal, a new system using a mobile application has been integrated into existing infrastructure at Hannover Medical School (MHH). Within a pilot project, this system has been brought into clinical daily routine in February 2022. Insights generated may support further applications in clinical use-cases
    corecore