418 research outputs found

    Strategic bidding in a primary reserve auction

    Get PDF
    Electricity grids are subject to a constant change of demand. If a power line is overloaded, the demand is rerouted to another line, which is then also likely to overload due to the sudden spike in voltage. Due to this cascading effect a grid-wide blackout is not at all improbable; one occurred in Italy in 2003. The costs of such a blackout are immense in today’s modern society. Transport and telecommunication systems have such a high power demand that a backup power generator system would come at a very high cost. To solve this, Germany requires the electricity grid operators to have Primary Reserve Capacity on standby..

    Flexibele pensionering

    Get PDF

    The influence of oxygen and oxidative stress on <i>de novo</i> acquisition of antibiotic resistance in <i>E. coli</i> and <i>Lactobacillus lactis</i>

    Get PDF
    Background: Bacteria can acquire resistance through DNA mutations in response to exposure to sub-lethal concentrations of antibiotics. According to the radical-based theory, reactive oxygen species (ROS), a byproduct of the respiratory pathway, and oxidative stress caused by reactive metabolic byproducts, play a role in cell death as secondary killing mechanism. In this study we address the question whether ROS also affects development of resistance, in the conditions that the cells is not killed by the antibiotic. Results: To investigate whether oxygen and ROS affect de novo acquisition of antibiotic resistance, evolution of resistance due to exposure to non-lethal levels of antimicrobials was compared in E. coli wildtype and ΔoxyR strains under aerobic and anaerobic conditions. Since Lactococcus lactis (L. lactis) does not have an active electron transport chain (ETC) even in the presence of oxygen, and thus forms much less ROS, resistance development in L. lactis was used to distinguish between oxygen and ROS. The resistance acquisition in E. coli wildtype under aerobic and anaerobic conditions did not differ much. However, the aerobically grown ΔoxyR strain gained resistance faster than the wildtype or anaerobic ΔoxyR. Inducing an ETC by adding heme increased the rate at which L. lactis acquired resistance. Whole genome sequencing identified specific mutations involved in the acquisition of resistance. These mutations were specific for each antibiotic. The lexA mutation in ΔoxyR strain under aerobic conditions indicated that the SOS response was involved in resistance acquisition. Conclusions: The concept of hormesis can explain the beneficial effects of low levels of ROS and reactive metabolic byproducts, while high levels are lethal. DNA repair and mutagenesis may therefore expedite development of resistance. Taken together, the results suggest that oxygen as such barely affects resistance development. Nevertheless, non-lethal levels of ROS stimulate de novo acquisition of antibiotic resistance

    Whole-cell metabolic control analysis

    Get PDF
    Since its conception some fifty years ago, metabolic control analysis (MCA) aims to understand how cells control their metabolism by adjusting the activity of their enzymes. Here we extend its scope to a whole-cell context. We consider metabolism in the evolutionary context of growth-rate maximisation by optimisation of protein concentrations. This framework allows for the prediction of flux control coefficients from proteomics data or stoichiometric modelling. Since genes compete for finite biosynthetic resources, we treat all protein concentrations as interdependent. We show that elementary flux modes (EFMs) emerge naturally as the optimal metabolic networks in the whole-cell context and we derive their control properties. In the evolutionary optimum, the number of expressed EFMs is determined by the number of protein-concentration constraints that limit growth rate. We use published glucose-limited chemostat data of S. cerevisiae to illustrate that it uses only two EFMs prior to the onset of fermentation and that it uses four EFMs during fermentation. We discuss published enzyme-titration data to show that S. cerevisiae and E. coli indeed can express proteins at growth-rate maximising concentrations. Accordingly, we extend MCA to elementary flux modes operating at an optimal state. We find that the expression of growth-unassociated proteins changes results from classical metabolic control analysis. Finally, we show how flux control coefficients can be estimated from proteomics and ribosome-profiling data. We analyse published proteomics data of E. coli to provide a whole-cell perspective of the control of metabolic enzymes on growth rate. We hope that this paper stimulates a renewed interest in metabolic control analysis, so that it can serve again the purpose it once had: to identify general principles that emerge from the biochemistry of the cell and are conserved across biological species

    Listeria motility increases the efficiency of epithelial invasion during intestinal infection

    Get PDF
    Listeria monocytogenes (Lm) is a food-borne pathogen that causes severe bacterial gastroenteritis, with high rates of hospitalization and mortality. Lm is ubiquitous in soil, water and livestock, and can survive and proliferate at low temperatures. Following oral ingestion of contaminated food, Lm crosses the epithelium through intestinal goblet cells in a mechanism mediated by Lm InlA binding host E-cadherin. Importantly, human infections typically occur with Lm growing at or below room temperature, which is flagellated and motile. Even though many important human bacterial pathogens are flagellated, little is known regarding the effect of Lm motility on invasion and immune evasion. Here, we used complementary imaging and computer modeling approaches to test the hypothesis that bacterial motility helps Lm locate and engage target cells permissive for invasion. Imaging explanted mouse and human intestine, we showed that Lm grown at room temperature uses motility to scan the epithelial surface and preferentially attach to target cells. Furthermore, we integrated quantitative parameters from our imaging experiments to construct a versatile layered cellular Potts model (L-CPM) that simulates host-pathogen dynamics. Simulated data are consistent with the hypothesis that bacterial motility enhances invasion by allowing bacteria to search the epithelial surface for their preferred invasion targets. Indeed, our model consistently predicts that motile bacteria invade twice as efficiently over the first hour of infection. We also examined how bacterial motility affected interactions with host cellular immunity. In a mouse model of persistent infection, we found that neutrophils migrated to the apical surface of the epithelium 5 hours post infection and interacted with Lm. Yet in contrast to the view that neutrophils hunt for bacteria, we found that these interactions were driven by motility of Lm-which moved at least ~50x faster than neutrophils. Furthermore, our L-CPM predicts that motile bacteria maintain their invasion advantage even in the presence of host phagocytes, with the balance between invasion and phagocytosis governed almost entirely by bacterial motility. In conclusion, our simulations provide insight into host pathogen interaction dynamics at the intestinal epithelial barrier early during infection

    Population bottleneck has only marginal effect on fitness evolution and its repeatability in dioecious Caenorhabditis elegans

    Get PDF
    The predictability of evolution is expected to depend on the relative contribution of deterministic and stochastic processes. This ratio is modulated by effective population size. Smaller effective populations harbor less genetic diversity and stochastic processes are generally expected to play a larger role, leading to less repeatable evolutionary trajectories. Empirical insight into the relationship between effective population size and repeatability is limited and focused mostly on asexual organisms. Here, we tested whether fitness evolution was less repeatable after a population bottleneck in obligately outcrossing populations of Caenorhabditis elegans. Replicated populations founded by 500, 50, or five individuals (no/moderate/strong bottleneck) were exposed to a novel environment with a different bacterial prey. As a proxy for fitness, population size was measured after one week of growth before and after 15 weeks of evolution. Surprisingly, we found no significant differences among treatments in their fitness evolution. Even though the strong bottleneck reduced the relative contribution of selection to fitness variation, this did not translate to a significant reduction in the repeatability of fitness evolution. Thus, although a bottleneck reduced the contribution of deterministic processes, we conclude that the predictability of evolution may not universally depend on effective population size, especially in sexual organisms

    Anisotropy of weakly vibrated granular flows

    Get PDF
    We experimentally probe the anisotropy of the fabric of weakly vibrated, flowing granular media. Depending on the driving parameters --- flow rate and vibration strength --- this anisotropy varies significantly. We show how the anisotropy collapses when plotted as function of the driving stresses, uncovering a direct link between stresses and anisotropy. Moreover, our data suggests that for small anisotropies, the shear stresses vanish. Anisotropy of the fabric of granular media thus plays a crucial role in determining the rheology of granular flows
    • …
    corecore