5 research outputs found

    Earth Observation Technologies: Low-End-Market Disruptive Innovation

    Get PDF
    After decades of traditional space businesses, the space paradigm is changing. New approaches to more efficient missions in terms of costs, design, and manufacturing processes are fostered. For instance, placing big constellations of micro- and nano-satellites in Low Earth Orbit and Very Low Earth Orbit (LEO and VLEO) enables the space community to obtain a huge amount of data in near real-time with an unprecedented temporal resolution. Beyond technology innovations, other drivers promote innovation in the space sector like the increasing demand for Earth Observation (EO) data by the commercial sector. Perez et al. stated that the EO industry is the second market in terms of operative satellites (661 units), micro- and nano-satellites being the higher share of them (61%). Technological and market drivers encourage the emergence of new start-ups in the space environment like Skybox, OneWeb, Telesat, Planet, and OpenCosmos, among others, with novel business models that change the accessibility, affordability, ownership, and commercialization of space products and services. This chapter shows some results of the H2020 DISCOVERER (DISruptive teChnOlogies for VERy low Earth oRbit platforms) Project and focuses on understanding how micro- and nano-satellites have been disrupting the EO market in front of traditional platforms

    ROAR - A ground-based experimental facility for orbital aerodynamics research

    No full text
    DISCOVERER is a European Commission funded project aiming to revolutionise satellite applications in Very Low Earth Orbits (VLEO). The project encompasses many different aspects of the requirements for sustainable operation, including developments on geometric designs, aerodynamic attitude and orbital control, improvement of intake designs for atmosphere breathing electric propulsion, commercial viability, and development of novel materials. This paper is focused solely on the description of the experimental facility designed and constructed to perform ground testing of materials, characterising their behaviour in conditions similar to those found in VLEO. ROAR, Rarefied Orbital Aerodynamics Research facility, is an experiment designed to provide a controlled environment with free molecular flow and atomic oxygen flux comparable to the real orbital environment. ROAR is a novel experiment, with the objective of providing better and deeper understanding of the gas-surface interactions between the material and the atmosphere, rather than other atomic oxygen exposure facilities which are mainly focused on erosion studies. The system is comprised of three major parts, (i) ultrahigh vacuum setup, (ii) hyperthermal oxygen atom generator (HOAG) and (iii) ion-neutral mass spectrometers (INMS). Each individual part will be considered, their performance analysed based on experimental data acquired during the characterisation and commissioning, thus leading to a complete description of ROAR’s capabilities. Among the key parameters to be discussed are operational pressure, atomic oxygen flux, beam shape and energy spread, mass resolution, signal-to-noise ratio and experimental methodology.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737183.Peer ReviewedPostprint (published version

    Chapter Earth Observation Technologies: Low-End-Market Disruptive Innovation

    Get PDF
    After decades of traditional space businesses, the space paradigm is changing. New approaches to more efficient missions in terms of costs, design, and manufacturing processes are fostered. For instance, placing big constellations of micro- and nano-satellites in Low Earth Orbit and Very Low Earth Orbit (LEO and VLEO) enables the space community to obtain a huge amount of data in near real-time with an unprecedented temporal resolution. Beyond technology innovations, other drivers promote innovation in the space sector like the increasing demand for Earth Observation (EO) data by the commercial sector. Perez et al. stated that the EO industry is the second market in terms of operative satellites (661 units), micro- and nano-satellites being the higher share of them (61%). Technological and market drivers encourage the emergence of new start-ups in the space environment like Skybox, OneWeb, Telesat, Planet, and OpenCosmos, among others, with novel business models that change the accessibility, affordability, ownership, and commercialization of space products and services. This chapter shows some results of the H2020 DISCOVERER (DISruptive teChnOlogies for VERy low Earth oRbit platforms) Project and focuses on understanding how micro- and nano-satellites have been disrupting the EO market in front of traditional platforms
    corecore