1,011 research outputs found

    Emergent modular neural control drives coordinated motor actions.

    Get PDF
    A remarkable feature of motor control is the ability to coordinate movements across distinct body parts into a consistent, skilled action. To reach and grasp an object, 'gross' arm and 'fine' dexterous movements must be coordinated as a single action. How the nervous system achieves this coordination is currently unknown. One possibility is that, with training, gross and fine movements are co-optimized to produce a coordinated action; alternatively, gross and fine movements may be modularly refined to function together. To address this question, we recorded neural activity in the primary motor cortex and dorsolateral striatum during reach-to-grasp skill learning in rats. During learning, the refinement of fine and gross movements was behaviorally and neurally dissociable. Furthermore, inactivation of the primary motor cortex and dorsolateral striatum had distinct effects on skilled fine and gross movements. Our results indicate that skilled movement coordination is achieved through emergent modular neural control

    Development of a Chaff Dispense Program for Target Tracking Radar Deception

    Get PDF
    This study aims to develop an appropriate chaff dispensing program to deceive the target tracking radar (TTR) effectively. Chaff is a countermeasure commonly used by fighter aircraft to deceive TTR. However, there has been a lack of methodology for calculating chaff dispense programs that take into account the specific characteristics of the fighter, chaff, and TTR. This study proposes a methodology that considers these variables to calculate chaff dispense programs and addresses this gap. The proposed method is demonstrated through TESS engagement, which shows its effectiveness in various engagement situations

    Application of Ganz Surgical Hip Dislocation Approach in Pediatric Hip Diseases

    Get PDF
    Ganz surgical hip dislocation is useful in the management of severe hip diseases, providing an unobstructed view of the femoral head and acetabulum. We present our early experience with this approach in pediatric hip diseases. Twenty-three hips of 21 patients with pediatric hip diseases treated using the Ganz surgical hip dislocation approach were the subjects of this study. The average age at the time of surgery was 15.7 years. There were 15 male and 6 female patients who were followed for an average of 15.1 months (range, 6 to 29 months). Diagnoses included hereditary multiple exostoses in 9 hips, slipped capital femoral epiphysis in 7, Legg-Calvé-Perthes disease in 4, osteoid osteoma in 1, pigmented villonodular synovitis in 1, and neonatal septic hip sequelae in 1. Medical records were reviewed to record diagnoses, principal surgical procedures, operative time, blood loss, postoperative rehabilitation, changes in the range of hip joint motion, and complications. Femoral head-neck osteochondroplasty was performed in 17 patients, proximal femoral realignment osteotomy in 6, open reduction and subcapital osteotomy for slipped capital femoral epiphysis (SCFE) in 2, core decompression and bone grafting in 2, hip distraction arthroplasty in 2, and synovectomy in 2. Operative time averaged 168.6 minutes when only osteochondroplasty and/or synovectomy were performed. Hip flexion range improved from a preoperative mean of 84.7 degrees to a mean of 115.0 degrees at the latest follow-up visit. Early continuous passive motion and ambulation were stressed in rehabilitation. No avascular necrosis of the femoral head was noted up to the time of the latest follow-up visit, except for in one SCFE patient whose surgical intervention was delayed for medical reasons. Ganz surgical hip dislocation provides wide exposure of the femoral head and neck, which enables complete and precise evaluation of the femoral head and neck contour. Hence, the extensive impinging bump can be excised meticulously, and the circulation of the femoral head can be monitored during surgery. The Ganz procedure was useful in severe pediatric hip diseases and allowed for quick rehabilitation with fewer complications.Y

    Development of a Chaff Dispense Program for Target Tracking Radar Deception

    Get PDF
    This study aims to develop an appropriate chaff dispensing program to deceive the target tracking radar (TTR) effectively. Chaff is a countermeasure commonly used by fighter aircraft to deceive TTR. However, there has been a lack of methodology for calculating chaff dispense programs that take into account the specific characteristics of the fighter, chaff, and TTR. This study proposes a methodology that considers these variables to calculate chaff dispense programs and addresses this gap. The proposed method is demonstrated through TESS engagement, which shows its effectiveness in various engagement situations

    Prevention of hypoglycemia-induced neuronal death by minocycline

    Get PDF
    Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients

    Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid β

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyloid β (Aβ) accumulates in Alzheimer's disease (AD) brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ.</p> <p>Methods</p> <p>hAPP<sub>J20 </sub>mice, which accumulate Aβ with ageing, were crossed with PARP-1<sup>-/- </sup>mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1<sup>-/- </sup>mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1<sup>-/- </sup>cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene.</p> <p>Results</p> <p>The hAPP<sub>J20 </sub>mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPP<sub>J20</sub>/<it>PARP-1<sup>-/- </sup></it>mice. Similarly, Aβ<sub>1-42 </sub>injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the neurotrophic factors TGFβ and VEGF, and did not impair microglial phagocytosis of Aβ peptide.</p> <p>Conclusions</p> <p>These results identify PARP-1 as a requisite and previously unrecognized factor in Aβ-induced microglial activation, and suggest that the effects of PARP-1 are mediated, at least in part, by its interactions with NF-κB. The suppression of Aβ-induced microglial activation and neurotoxicity by PARP-1 inhibition suggests this approach could be useful in AD and other disorders in which microglial neurotoxicity may contribute.</p

    Capnography for Assessing Nocturnal Hypoventilation and Predicting Compliance with Subsequent Noninvasive Ventilation in Patients with ALS

    Get PDF
    BACKGROUND: Patients with amyotrophic lateral sclerosis (ALS) suffer from hypoventilation, which can easily worsen during sleep. This study evaluated the efficacy of capnography monitoring in patients with ALS for assessing nocturnal hypoventilation and predicting good compliance with subsequent noninvasive ventilation (NIV) treatment. METHODS: Nocturnal monitoring and brief wake screening by capnography/pulse oximetry, functional scores, and other respiratory signs were assessed in 26 patients with ALS. Twenty-one of these patients were treated with NIV and had their treatment compliance evaluated. RESULTS: Nocturnal capnography values were reliable and strongly correlated with the patients' respiratory symptoms (R(2) = 0.211-0.305, p = 0.004-0.021). The duration of nocturnal hypercapnea obtained by capnography exhibited a significant predictive power for good compliance with subsequent NIV treatment, with an area-under-the-curve value of 0.846 (p = 0.018). In contrast, no significant predictive values for nocturnal pulse oximetry or functional scores for nocturnal hypoventilation were found. Brief waking supine capnography was also useful as a screening tool before routine nocturnal capnography monitoring. CONCLUSION: Capnography is an efficient tool for assessing nocturnal hypoventilation and predicting good compliance with subsequent NIV treatment of ALS patients, and may prove useful as an adjunctive tool for assessing the need for NIV treatment in these patients
    corecore